A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Rationally engineered active sites for efficient and durable hydrogen generation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The atomic-level understanding of the electrocatalytic activity is pivotal for developing new metal-free carbon electrocatalysts towards efficient renewable energy conversion. Here, by utilizing the amidated-carbon fibers, we demonstrate a rational surface modulation strategy on both structural and electronic properties, which will significantly boost the hydrogen evolution reaction activity of electrocatalysts. Theoretical calculations reveal the amidation decorated surface will promote significantly more 2D electrons towards the localization at the C=O branch. The modified surface displays a self-activated electron-extraction characteristic that was actualized by a fast reversible bond-switching between HO-C=C and O=C-C. Experimentally, this metal-free electrode exhibits outstanding hydrogen evolution reaction activities and long-term stabilities in both acidic and alkaline media, even surpassing the commercial 20 wt% Pt/C catalyst. Thus, this strategy can extend to a general blueprint for achieving precise tuning on highly efficient electron-transfer of hydrogen evolution reaction for broad applications under universal pH conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533258PMC
http://dx.doi.org/10.1038/s41467-019-10230-zDOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
12
evolution reaction
12
rationally engineered
4
engineered active
4
active sites
4
sites efficient
4
efficient durable
4
hydrogen
4
durable hydrogen
4
hydrogen generation
4

Similar Publications