98%
921
2 minutes
20
The speed of motor reaction to an external stimulus varies substantially between individuals and is slowed in aging. However, the neuroanatomical origins of interindividual variability in reaction time (RT) remain unclear. Here, we combined a cognitive model of RT and a biophysical compartment model of diffusion-weighted MRI (DWI) to characterize the relationship between RT and microstructure of the corticospinal tract (CST) and the optic radiation (OR), the primary motor output and visual input pathways associated with visual-motor responses. We fitted an accumulator model of RT to 46 female human participants' behavioral performance in a simple reaction time task. The non-decision time parameter () derived from the model was used to account for the latencies of stimulus encoding and action initiation. From multi-shell DWI data, we quantified tissue microstructure of the CST and OR with the neurite orientation dispersion and density imaging (NODDI) model as well as the conventional diffusion tensor imaging model. Using novel skeletonization and segmentation approaches, we showed that DWI-based microstructure metrics varied substantially along CST and OR. The of individual participants was negatively correlated with the NODDI measure of the neurite density in the bilateral superior CST. Further, we found no significant correlation between the microstructural measures and mean RT. Thus, our findings suggest a link between interindividual differences in sensorimotor speed and selective microstructural properties in white-matter tracts. How does our brain structure contribute to our speed to react? Here, we provided anatomically specific evidence that interindividual differences in response speed is associated with white-matter microstructure. Using a cognitive model of reaction time (RT), we estimated the non-decision time, as an index of the latencies of stimulus encoding and action initiation, during a simple reaction time task. Using an advanced microstructural model for diffusion MRI, we estimated the tissue properties and their variations along the corticospinal tract and optic radiation. We found significant location-specific correlations between the microstructural measures and the model-derived parameter of non-decision time but not mean RT. These results highlight the neuroanatomical signature of interindividual variability in response speed along the sensorimotor pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650993 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2954-18.2019 | DOI Listing |
J Oncol Pharm Pract
September 2025
Hematology/Oncology, Scripps Clinic, La Jolla, USA.
IntroductionDaratumumab is a therapeutic cornerstone of the management of multiple myeloma, exerting its anti-myeloma activity through targeting of the cell surface glycoprotein CD38 on plasma cells. While originally given intravenously, the subcutaneous formulation, daratumumab hyaluronidase injection (Dara SC), has been associated with non-inferior efficacy and lower infusion-related reaction rates (IRRs) in the treatment of multiple myeloma and light chain amyloidosis. A noted benefit of Dara SC is a short administration time; however, the optimal observation time post injection to ensure patient safety is unclear from the drug labeling.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Research Centre of Modern Analytical Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
A tetrahydroxydiboron-mediated radical cyclization of unactivated alkenes under photoinduced reaction conditions was developed to synthesize ring-fused quinazolinones for the first time. The concise, mild and photocatalyst- and oxidant-free conditions, as well as the good functional group tolerance, render this protocol a green and convenient strategy for synthesizing polycyclic ring-fused quinazolinones. Mechanistic studies indicated that the process might involve a radical pathway.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu - Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.
A regioselective C2-alkynylation of indoles ruthenium(II)-catalyzed C-H activation using bromoalkynes is demonstrated under both solution-phase and mechanochemical conditions. The solvent-minimized mechanochemical method delivers comparable yields with reduced reaction time and improved green metrics. Broad substrate scope, gram-scale applicability, and post-functionalization showcase the synthetic utility of this approach.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
October 2025
Division of Rheumatology and Systemic Inflammatory Diseases, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Aims: Sarcoid myopathy (SaM) is characterised by granulomatous myositis (GM) and can overlap with inclusion body myositis (IBM), a late-onset chronic idiopathic inflammatory myopathy with a still enigmatic pathogenesis. As GM can occur in different clinical contexts, we aimed to examine the histomorphologic features and gene expression profiles in cases of definite SaM that may inform diagnostic and therapeutic considerations.
Methods: We performed a multidimensional characterisation of muscle biopsy specimens from patients with 'pure SaM' (n=17), SaM with concomitant IBM (SaM-IBM) (n=2), including histopathologic and ultrastructural analysis in addition to quantitative real-time polymerase chain reaction.
Small
September 2025
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of AI-Driven Zero-Carbon Technologies, Key Laboratory of New Low-carbon Green Chemical Technology Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China.
Sarcosine (Sar), a critical potential biomarker for prostate cancer (PCa), is primarily detected via enzyme cascade reactions involving sarcosine oxidase (SOx) and peroxidase. Nevertheless, the intermediate product hydrogen peroxide (HO) tends to diffuse to the bulk solution phase without entering subsequent reaction, leading to suboptimal detection sensitivity and compromised analytical performance. To tackle this challenge, a multilayered sandwich nanozyme cascade sensor (designated as Cu-MOF/Rf@BDC) is proposed through a confinement-mediated HO enrichment strategy.
View Article and Find Full Text PDF