Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Proper control of cell migration is critically important in many biologic processes, such as wound healing, immune surveillance, and development. Much progress has been made in the initiation of cell migration; however, little is known about termination and sometimes directional reversal. During active cell migration, as in wound healing, development, and immune surveillance, the integrin expression profile undergoes drastic changes. Here, we uncovered the extensive regulatory and even opposing roles of integrins in directional cell migration in electric fields (EFs), a potentially important endogenous guidance mechanism. We established cell lines that stably express specific integrins and determined their responses to applied EFs with a high throughput screen. Expression of specific integrins drove cells to migrate to the cathode or to the anode or to lose migration direction. Cells expressing αMβ2, β1, α2, αIIbβ3, and α5 migrated to the cathode, whereas cells expressing β3, α6, and α9 migrated to the anode. Cells expressing α4, αV, and α6β4 lost directional electrotaxis. Manipulation of α9 molecules, one of the molecular directional switches, suggested that the intracellular domain is critical for the directional reversal. These data revealed an unreported role for integrins in controlling stop, go, and reversal activity of directional migration of mammalian cells in EFs, which might ensure that cells reach their final destination with well-controlled speed and direction.-Zhu, K., Takada, Y., Nakajima, K., Sun, Y., Jiang, J., Zhang, Y., Zeng, Q., Takada, Y., Zhao, M. Expression of integrins to control migration direction of electrotaxis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662972PMC
http://dx.doi.org/10.1096/fj.201802657RDOI Listing

Publication Analysis

Top Keywords

cell migration
16
migration direction
12
cells expressing
12
expression integrins
8
integrins control
8
migration
8
control migration
8
direction electrotaxis
8
wound healing
8
immune surveillance
8

Similar Publications

At present, flexible sensors are a hot spot in research and experimental development, but the research on flexible sensors that can be used for human motion monitoring still needs to be deepened. In this work, the green material cellulose acetate (CA) was used as the matrix material, the film was made by electrospinning, crushed by a cell grinder and sodium alginate (SA) was added to promote the uniform dispersion of nanofibers in water, and then methyltrimethoxysilane (MTMS) and MXene nanosheet dispersion were added to make it hydrophobic and good conductivity, and the aerogel precursor solution was prepared, and then the CA/SA/MTMS/MXene aerogel with directional holes was prepared by directional freeze-drying. As a flexible sensor material, it can be used for human wear, monitoring the electrical signals generated by the movement of human joints and other parts, and can still maintain a current of about 0.

View Article and Find Full Text PDF

Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.

View Article and Find Full Text PDF

Directional Biomimetic Scaffold-Mediated Cell Migration and Pathological Microenvironment Regulation Accelerate Diabetic Bone Defect Repair.

ACS Nano

September 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev

Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.

View Article and Find Full Text PDF

Unlabelled: Dendritic cells (DCs) are the primary inducers of immunity induced by infection or vaccination. To stimulate durable T cell-mediated immunity, multiple DC activities are required. DCs must present antigen, express costimulatory molecules, and secrete inflammatory cytokines to direct T cell activation.

View Article and Find Full Text PDF

Background: The factors contributing to a poor response to subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) are not yet fully understood. Accordingly, predicting the outcome might be challenging particularly in those who display an optimal response to the Levodopa challenge test.

Objective: To determine which factors may contribute to poor outcome of STN-DBS in PD.

View Article and Find Full Text PDF