Genomics and Genetics of .

Microbiol Spectr

Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy.

Published: May 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ninety years after the discovery of pneumococcal Transformation, and 74 years after the work of Avery and colleagues that identified DNA as the genetic material, is still one of the most important model organism to understand Bacterial Genetics and Genomics. In this Chapter special emphasis has been given to Genomics and to Mobile Genetic Elements (the Mobilome) which greatly contribute to the dynamic variation of pneumococcal genomes by horizontal gene transfer. Other topics include molecular mechanisms of Genetic Transformation, Restriction/Modification Systems, Mismatch DNA Repair, and techniques for construction of genetically engineered pneumococcal strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315030PMC
http://dx.doi.org/10.1128/microbiolspec.GPP3-0025-2018DOI Listing

Publication Analysis

Top Keywords

genomics genetics
4
genetics years
4
years discovery
4
discovery pneumococcal
4
pneumococcal transformation
4
transformation years
4
years work
4
work avery
4
avery colleagues
4
colleagues identified
4

Similar Publications

Evidence indicates that transposable elements (TEs) can contribute to the evolution of new traits, with some TEs acting as deleterious elements while others are repurposed for beneficial roles in evolution. In mammals, some KRAB-ZNF proteins can serve as a key defense mechanism to repress TEs, offering genomic protection. Notably, the family of KRAB-ZNF genes evolves rapidly and exhibits diverse expression patterns in primate brains, where some TEs, including autonomous LINE-1 and non-autonomous Alu and SVA elements, remain mobile.

View Article and Find Full Text PDF

Plasma membrane maize Gγ protein MGG4 positively regulates seed size mainly through influencing kernel width.

Plant Cell Rep

September 2025

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.

Plasma membrane Gγ protein MGG4, the candidate for maize yield QTL, positively regulates seed size mainly through affecting kernel width.

View Article and Find Full Text PDF

 Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.

View Article and Find Full Text PDF

Ischemic stroke (IS) has high morbidity/mortality with limited treatments. This study screened core copper homeostasis-related genes in IS and validated their function as precise intervention targets. Human IS gene chip data were retrieved from GEO, and copper homeostasis genes from multiple databases.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hr after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity.

View Article and Find Full Text PDF