A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Composite Learning Enhanced Robot Impedance Control. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The desired impedance dynamics can be achieved for a robot if and only if an impedance error converges to zero or a small neighborhood of zero. Although the convergence of impedance errors is important, it is seldom obtained in the existing impedance controllers due to robots modeling uncertainties and external disturbances. This brief proposes two composite learning impedance controllers (CLICs) for robots with parameter uncertainties based on whether a factorization assumption is satisfied or not. In the proposed control designs, the convergence of impedance errors, reflected by the convergence of parameter estimation errors and some auxiliary errors, is achieved by using composite learning laws under a relaxed excitation condition. The theoretical results are proven based on the Lyapunov theory. The effectiveness and advantages of the proposed CLICs are validated by simulations on a parallel robot in three cases.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2019.2912212DOI Listing

Publication Analysis

Top Keywords

composite learning
12
robot impedance
8
convergence impedance
8
impedance errors
8
impedance controllers
8
impedance
7
learning enhanced
4
enhanced robot
4
impedance control
4
control desired
4

Similar Publications