Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The combination of tetramethylpyrazine phosphate (TMPP) and borneol (BO) protects against cerebral ischemia. However, the mechanism for their synergistic effect is unclear. In this study, an oxygen-glucose deprivation (OGD) injured brain model was induced in microvascular endothelium cells (BMECs). TMPP and BO concentrations were optimized according to an MTT assay. Cells were divided into five groups: control, model, TMPP, BO, and TMPP+BO. Subsequently, oxidative stress was evaluated based on the levels of superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), glutathione peroxidase (GSH-Px), and reactive oxygen species (ROS). Intracellular calcium ([Ca]i) was detected using a laser confocal microscope. Cellular apoptosis was examined via Hoechst 33342 staining, flow cytometry, and expression of p53, B-cell lymphoma 2 (BCL-2), BCL-2-like protein 4 (BAX), and caspase-3 mRNA. Angiogenesis was evaluated based on expression of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), fibroblast growth factor receptor 1 (FGFR1), Vascular endothelial growth factor receptor 1 (VEGFR1), and VEGFR2. Results showed that 5.0 μM TMPP and 0.5 μM BO were optimal. Monotherapy significantly enhanced CAT, BCL-2, and VEGF, and also reduced [Ca]i, apoptosis, and BAX. TMPP increased SOD, GSH-Px, and bFGF, and reduced MDA, ROS, p53, and caspase-3 levels. BO reduced VEGFR1 expression. TMPP+BO combination exhibited synergistic effects in decreasing apoptosis, and modulating expression of BCL-2, BAX, and VEGFR1. These results indicate that protection of OGD-injured BMECs by TMPP+BO combination involves anti-oxidation, apoptosis inhibition, and angiogenesis. Moreover, their synergistic mechanism was mainly related to the regulation of apoptosis and angiogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511760PMC

Publication Analysis

Top Keywords

growth factor
16
tetramethylpyrazine phosphate
8
microvascular endothelium
8
endothelium cells
8
evaluated based
8
fibroblast growth
8
vascular endothelial
8
endothelial growth
8
factor receptor
8
tmpp+bo combination
8

Similar Publications

Objectives: Empty sella is the herniation of the subarachnoid space into the sella turcica; either secondary to identifiable causes (e.g., surgery or radiotherapy); or spontaneously, which is termed primary empty sella (PES).

View Article and Find Full Text PDF

Objectives: Complement factor I (CFI) deficiency is a rare condition that can present with fulminant relapsing CNS autoinflammation. In this report, we highlight the utility of genetic testing in unexplained CNS autoinflammation.

Methods: This case report describes a young adult with partial CFI deficiency, presenting with acute hemorrhagic leukoencephalitis and longitudinally extensive transverse myelitis.

View Article and Find Full Text PDF

Objective: Aim: To evaluate clinical applicability of immune mediator's interleukin-16, immunoglobulin E along with eosinophil count in diagnosing COVID-19 and determining its severity.

Patients And Methods: Materials and Methods: Cross-sectional case-control study was conducted at Al-Najaf General Hospital, Najaf, Iraq between March and August 2024. 120 participants: 60 confirmed COVID-19 cases and 60 healthy controls which matched cases in terms of age and sex.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.

View Article and Find Full Text PDF

Angiotensin II (Ang II) releases inflammatory mediators from several cell types. The objective of this study was to investigate the potential of Ang II to induce mRNA expression of inflammatory mediators in primary cultured fibroblast-like cells isolated from gingival and periodontal ligament tissues. A synergistic effect of co-treatment with Ang II and Interleukin-1β (IL1β) on the mRNA expression of inflammatory mediators was explored.

View Article and Find Full Text PDF