Capability by Stacking: The Current Design Heuristic for Soft Robots.

Biomimetics (Basel)

School of Engineering, The Institute for Integrated Micro and Nano Systems, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3LJ, UK.

Published: July 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soft robots are a new class of systems being developed and studied by robotics scientists. These systems have a diverse range of applications including sub-sea manipulation and rehabilitative robotics. In their current state of development, the prevalent paradigm for the control architecture in these systems is a one-to-one mapping of controller outputs to actuators. In this work, we define functional blocks as the physical implementation of some discrete behaviors, which are presented as a decomposition of the behavior of the soft robot. We also use the term 'stacking' as the ability to combine functional blocks to create a system that is more complex and has greater capability than the sum of its parts. By stacking functional blocks a system designer can increase the range of behaviors and the overall capability of the system. As the community continues to increase the capabilities of soft systems-by stacking more and more functional blocks-we will encounter a practical limit with the number of parallelized control lines. In this paper, we review 20 soft systems reported in the literature and we observe this trend of one-to-one mapping of control outputs to functional blocks. We also observe that stacking functional blocks results in systems that are increasingly capable of a diverse range of complex motions and behaviors, leading ultimately to systems that are capable of performing useful tasks. The design heuristic that we observe is one of increased capability by stacking simple units-a classic engineering approach. As we move towards more capability in soft robotic systems, and begin to reach practical limits in control, we predict that we will require increased amounts of autonomy in the system. The field of soft robotics is in its infancy, and as we move towards realizing the potential of this technology, we will need to develop design tools and control paradigms that allow us to handle the complexity in these stacked, non-linear systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6352699PMC
http://dx.doi.org/10.3390/biomimetics3030016DOI Listing

Publication Analysis

Top Keywords

functional blocks
20
stacking functional
12
capability stacking
8
design heuristic
8
soft robots
8
systems
8
diverse range
8
one-to-one mapping
8
soft
7
functional
6

Similar Publications

Aims: Although the ability of the heart to adapt to environmental stress has been studied extensively, the molecular and cellular mechanisms responsible for cardioprotection are not yet fully understood. In this study, we sought to elucidate these mechanisms for cytoprotection using a model of stress-induced cardiomyopathy.

Methods And Results: We administered Toll-like receptor (TLR) agonists or diluent to wild-type mice and assessed for cardioprotection against injury from a high intraperitoneal dose of isoproterenol (ISO) administered 7 days later.

View Article and Find Full Text PDF

Background: Regional anesthesia techniques, such as unilateral spinal anesthesia and peripheral nerve blocks, are essential components of multimodal analgesia. Nonetheless, "rebound pain," an abrupt increase in nociceptive intensity following the cessation of the block, is inadequately defined and may compromise patient satisfaction and functional recovery.

Aims And Objectives: This study aimed to compare postoperative pain profiles, the incidence of rebound pain, and patient satisfaction following popliteal sciatic nerve block versus unilateral spinal anesthesia in elective foot surgeries.

View Article and Find Full Text PDF

Flaxseed oil contains elevated levels of omega-3 fatty acids (n-3 FA), which have been shown to impact reproductive performance. This study aimed to determine the effects of a flaxseed oil-based supplement on reproductive parameters, feeding behavior, and lipid profile in beef heifers. Sixty Angus and Simmental × Angus heifers (14 months old ± 2 months), blocked by full body weight (BW; 396.

View Article and Find Full Text PDF

Motivation: The advent of next-generation sequencing-based spatially resolved transcriptomics (SRT) techniques has reshaped genomic studies by enabling high-throughput gene expression profiling while preserving spatial and morphological context. Understanding gene functions and interactions in different spatial domains is crucial, as it can enhance our comprehension of biological mechanisms, such as cancer-immune interactions and cell differentiation in various regions. It is necessary to cluster tissue regions into distinct spatial domains and identify discriminating genes that elucidate the clustering result, referred to as spatial domain-specific discriminating genes (DGs).

View Article and Find Full Text PDF

The origin and phylogenetic distribution of symbiotic associations between nodulating angiosperms and nitrogen-fixing bacteria have long intrigued biologists. Recent comparative evolutionary analyses have yielded alternative hypotheses: a multistep pathway of independent gains and losses of root nodule symbiosis vs. a single gain followed by numerous losses.

View Article and Find Full Text PDF