Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cancer cells are known to produce and secret extracellular vesicles for intercellular communication through the carried cargos. HOTAIR (HOX transcript antisense intergenic RNA), a well-studied long non-coding RNA (lncRNA), plays a critical role in cancer progression. In several cancer types it has been shown that HOTAIR-containing exosomes are produced by cancer cells. Here we show that circulatory exosomal HOTAIR is present in breast cancer patients and explores the pathological correlation with the disease. Exosomes were isolated by matrix-based precipitation from conditioned media of cultured breast cancer cell lines as well as blood samples of recently recruited breast cancer patients. HOTAIR RNA in exosomes was detected by quantitative reverse transcriptase-mediated polymerase chain reaction (qRT-PCR). Expression of exosomal HOTAIR was positively correlated with status of the receptor tyrosine kinase (RTK) ErbB2 (also known as HER2/neu) in tumor tissues. The causal correlation of ErbB2 and HOTAIR was validated in isogenic breast cancer cell lines with and without ectopic ErbB2 expression. Our finding provides a molecular basis to develop novel liquid biopsy biomarkers and targeted therapies with improved precision for malignant breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.breast.2019.05.003 | DOI Listing |