Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objective- In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic factors. We aimed to identify and characterize microRNAs that regulate angiogenesis in response to tissue injury. Approach and Results- We show that in response to tissue injury, microRNA-615-5p (miR-615-5p) is rapidly induced and serves as an antiangiogenic microRNA by targeting endothelial cell VEGF (vascular endothelial growth factor)-AKT (protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling in vitro and in vivo. MiR-615-5p expression is increased in wounds of diabetic db/db mice, in plasma of human subjects with acute coronary syndromes, and in plasma and skin of human subjects with diabetes mellitus. Ectopic expression of miR-615-5p markedly inhibited endothelial cell proliferation, migration, network tube formation in Matrigel, and the release of nitric oxide, whereas miR-615-5p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3' untranslated region reporter and microribonucleoprotein immunoprecipitation assays, and small interfering RNA dependency studies demonstrate that miR-615-5p inhibits the VEGF-AKT/eNOS signaling pathway in endothelial cells by targeting IGF2 (insulin-like growth factor 2) and RASSF2 (Ras-associating domain family member 2). Local delivery of miR-615-5p inhibitors, markedly increased angiogenesis, granulation tissue thickness, and wound closure rates in db/db mice, whereas miR-615-5p mimics impaired these effects. Systemic miR-615-5p neutralization improved skeletal muscle perfusion and angiogenesis after hindlimb ischemia in db/db mice. Finally, modulation of miR-615-5p expression dynamically regulated VEGF-induced AKT signaling and angiogenesis in human skin organoids as a model of tissue injury. Conclusions- These findings establish miR-615-5p as an inhibitor of VEGF-AKT/eNOS-mediated endothelial cell angiogenic responses and that manipulating miR-615-5p expression could provide a new target for angiogenic therapy in response to tissue injury. Visual Overview- An online visual overview is available for this article.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594892 | PMC |
http://dx.doi.org/10.1161/ATVBAHA.119.312726 | DOI Listing |