Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rhizosphere and non-rhizosphere soil samples under different long-term fertilization treatments including control without fertilizer (CK), chemical fertilization alone (NPK), rice residues combined with NPK (NPKS), 30% manure plus 70% chemical fertilizers (LOM), and 60% manure plus 40% chemical fertilizers (HOM) were collected from a paddy field in a red soil hilly area in Ningxiang City, Hunan Province, China. The characteristics of microbial carbon utilization in the soils were studied. Results of O-HO tracer analysis showed that both soil microbial biomass carbon content (MBC) and microbial growth rate () were highest in the HOM treatment, whereas they were lowest in CK. In the rhizosphere soil, the highest basal respiration was observed in HOM, and the lowest values were in CK and NPK. Microbial carbon utilization efficiency (CUE) was highest in NPK but lowest in the LOM and HOM treatments. In non-rhizosphere soil, no significant differences between basal respiration and CUE were observed among the fertilization treatments. Results from MicroResp showed that the ability of microorganisms to metabolize exogenous carbon sources was higher in non-rhizosphere soil than in rhizosphere soil. The application of organic materials (rice residues or manure) increased the microbial metabolic rate of carboxylic acids, amino acids, and carbohydrates in the order carboxylic acids > amino acids and carbohydrates > complex compounds. Redundancy analysis of the microbial metabolism patterns of various carbon substrates showed that:① CK was well separated from the fertilization treatments; ② NPK was grouped with NPKS, whereas LOM and HOM were grouped together and were separate from NPK and NPKS. This indicates that the fertilization treatments changed the microbial carbon metabolism patterns. The above-mentioned results indicated that the fertilization treatments did not affect microbial CUE and basal respiration. However, exogenous carbon source input (such as root exudates) and the application of organic materials can increase microbial basal respiration, and thus, reduce microbial CUE.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201808022DOI Listing

Publication Analysis

Top Keywords

fertilization treatments
20
basal respiration
16
non-rhizosphere soil
12
microbial carbon
12
microbial
10
carbon source
8
rhizosphere non-rhizosphere
8
long-term fertilization
8
rice residues
8
npk npks
8

Similar Publications

The correlation between Pb species formation and bioaccessibility in alkaline, smelter-impacted soil co-contaminated with other toxic trace elements after treatment with phosphorus-containing amendments was investigated. The soil was collected near a former copper smelter, El Paso, Texas. It contained Pb (3200 ± 142 mg kg), As (254 ± 14 mg kg), and Cd (110 ± 8 mg kg).

View Article and Find Full Text PDF

Problem: Endometriosis is a chronic inflammatory disease that leads to pelvic pain and infertility. Recent studies have indicated that immunological, endocrine, biochemical, and genetic irregularities, along with suboptimal quality of oocytes, embryos, and the endometrial environment, significantly impact infertility associated with endometriosis. Ectopic endometrial cells in endometriosis have the capacity to avoid apoptosis.

View Article and Find Full Text PDF

In the zebrafish larval toxicity model, phenotypic changes induced by chemical exposure can potentially be explained and predicted by the analysis of gene expression changes at sub-phenotypic concentrations. The increase in knowledge of gene pathway-specific effects arising from the zebrafish transcriptomic model has the potential to enhance the role of the larval zebrafish as a component of Integrated Approaches to Testing and Assessment (IATA). In this paper, we compared the transcriptomic responses of triphenyl phosphate between two standard exposure paradigms, the Zebrafish Embryo Toxicity (ZET) and General and Behavioural Toxicity (GBT) assays.

View Article and Find Full Text PDF

The aim of the study was to reduce the chemical fertilizers with microbial inoculant-rich vermicompost, which enhanced the growth, flowering, and soil health of the tuberose crop. A total of six treatments were applied with reducing doses of synthetic fertilizers under a factorial randomized design and replicated thrice. In this study, vermicompost (VC) made from cow dung and vegetable waste utilizing Eisenia foetida and their mixed biomass were enriched with microbial inoculants and assessed for their impact on microbial and enzymatic populations including urease, acid phosphatase activity and dehydrogenase activity in soil, nutrient availability, and tuberose development and flowering.

View Article and Find Full Text PDF

Hydrothermal-based Wastewater Solids Management for Targeted Resource Recovery and Decarbonization in the Contiguous U.S.

Environ Sci Technol

September 2025

The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.

Wastewater solids management is a key contributor to the operational cost and greenhouse gas (GHG) emissions of water resource recovery facilities (WRRFs). This study proposes a 'waste-to-energy' strategy using a hydrothermal liquefaction (HTL)-based system to displace conventional energy- and emission-intensive practices. The proposed system directs HTL-produced biocrude to oil refineries and recovers regionally tailored nitrogen and phosphorus fertilizers.

View Article and Find Full Text PDF