98%
921
2 minutes
20
Cross Effect (CE) Dynamic Nuclear Polarization (DNP) relies on the dipolar (D) and exchange (J) coupling interaction between two electron spins. Until recently only the electron spin D coupling was explicitly included in quantifying the DNP mechanism. Recent literature discusses the potential role of J coupling in DNP, but does not provide an account of the distribution and source of electron spin J coupling of commonly used biradicals in DNP. In this study, we quantified the distribution of electron spin J coupling in AMUPol and TOTAPol biradicals using a combination of continuous wave (CW) X-band electron paramagnetic resonance (EPR) lineshape analysis in a series of solvents and at variable temperatures in solution - a state to be vitrified for DNP. We found that both radicals show a temperature dependent distribution of J couplings, and the source of this distribution to be conformational dynamics. To qualify this conformational dependence of J coupling in both molecules we carry out Broken Symmetry DFT calculations which show that the biradical rotamer distribution can account for a large distribution of J couplings, with the magnitude of J coupling directly depending on the relative orientation of the electron spin pair. We demonstrate that the electron spin J couplings in both AMUPol and TOTAPol span a much wider distribution than suggested in the literature. We affirm the importance of electron spin J coupling for DNP with density matrix simulations of DNP in Liouville space and under magic angle spinning, showcasing that a rotamer with high J coupling and optimum relative g-tensor orientation can significantly boost the DNP performance compared to random orientations of the electron spin pair. We conclude that moderate electron spin J coupling above a threshold value can facilitate DNP enhancements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ssnmr.2019.04.002 | DOI Listing |
J Inorg Biochem
September 2025
National Renewable Energy Laboratory, Biosciences Center, Golden, CO, USA. Electronic address:
Flavin-based electron bifurcation (FBEB) is employed by microorganisms for controlling pools of redox equivalents by reversibly splitting electron pairs into high- and low-energy levels from an initial midpoint potential. Our ability to harness this phenomenon is crucial for biocatalytic design which is limited by our understanding of energy coupling in the bifurcation system. In Pyrococcus furiosus, FBEB is carried out by the NADH-dependent ferredoxin:NADP-oxidoreductase (NfnSL), coupling the uphill reduction of ferredoxin in NfnL to the downhill reduction of NAD in NfnS from oxidation of NADPH.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Chemistry, Institute for Quantum Information Research and Engineering, and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113, United States.
Light-driven formation of radical ion pairs that occurs much faster than their electron spin dynamics results in correlated spins whose coherence properties can be used as a quantum-based electric field sensor. This results from the radical ion pair having charge and spin distributions that track one another. Thus, electric field induced changes in the distance between the two charges are reflected in the spin-spin distance that can be measured directly using out-of-phase electron spin echo envelope modulation (OOP-ESEEM), a pulse-EPR technique.
View Article and Find Full Text PDFInt J Radiat Biol
September 2025
Department of Geography, Nara Women's University, Nara, Japan.
Purpose: The number of oxygen vacancies in quartz measured by electron spin resonance (ESR) as the intensity of the E' center has been used to investigate the provenance of the sediments and has been found to be a good proxy in discussing the direction and intensity of the wind system in the past. While its temporal variations have been examined using marine sediments. The present study aimed to show that terrestrial sediments are also useful for such studies on climate change when it is continuous.
View Article and Find Full Text PDFNanoscale Adv
August 2025
Department of Metallurgical and Materials Engineering, Faculty of Engineering, University of Dokuz Eylül İzmir Turkey.
Thin films of CuSn Gd S were prepared on soda-lime glass substrates using spin coating in a sulfur-rich environment. We investigated how doping CuSnS with gadolinium (Gd) affected its structural, morphological, and optical properties using X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), and UV-Vis spectroscopy. XRD showed that all samples had a polycrystalline monoclinic structure, while FE-SEM revealed a mix of spherical and polygon-shaped grains.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemical Sciences, Tezpur University, Napaam 784028, Sonitpur, Assam, India.
Reaction of [Mn(salophen)Cl] {salophen = -phenylenediamine bis(salicylidenaminato)} with a tricyano Fe(III) precursor complex, [Fe(bbp)(CN)] {Hbbp = bis(2-benzimidazolyl)pyridine}, affords a dinuclear cyano-bridged heterometallic Mn-(μ-NC)-Fe fragment in the complex salt [Mn(salophen)(HO)][Mn(salophen)(HO)(μ-NC)Fe(bbp)(CN)]·4HO (1). The title compound shows field-induced slow relaxation of magnetization below 2.8 K.
View Article and Find Full Text PDF