98%
921
2 minutes
20
Nonthermal treatment with cold atmospheric plasma (CAP) is a promising option for local treatment of chronic-inflammatory and precancerous lesions as well as various mucosal cancer diseases, besides its primary indication for wound healing and antiseptics. Atmospheric pressure plasma jets (APPJs) are versatile plasma sources, some of which are well-characterized and medically approved. The characterization of APPJs, however, is often based on the treatment of simple solutions or even studies on the plasma effluent itself. To better assess the in vivo effects of CAP treatment, this study aims to recapitulate and study the physicochemical tissue-level effects of APPJ treatment on human primary mucosal tissue and tissue models. High resolution on-tissue infrared (IR) thermography and a first-time-performed spatially resolved optical emission spectroscopy (OES) of the APPJ emissions did not identify potentially tissue-harming effects. In this study, electron-spin-resonance (ESR) spectroscopy on human tissue samples, treated with different CAP doses, enabled the measurement and the distribution of CAP-derived radicals in the tissues. The results correlate plasma dosage and the generation of radical species with cell viability and cell proliferation of primary human fibroblasts while demonstrating apoptosis-independent antiproliferative cell effects. Moreover, a dose-dependent increase of cells in the G1 phase of the cell cycle was observed, stressing the likely important role of cell cycle regulation for antiproliferative CAP mechanisms. This study introduces suitable methods for CAP monitoring on tissues and contributes to a better understanding of tissue-derived plasma effects of APPJs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b04803 | DOI Listing |
Biomed Chromatogr
October 2025
Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang, China.
A rapid and specific liquid chromatography-tandem mass spectrometry method with a wide linear range was developed and validated for the simultaneous quantification of Vitamin K1 (VK1) trans- and cis- isomers in human plasma. Bovine serum albumin solution (15%) served as a surrogate matrix for preparing the calibrators to establish the quantitative curves. After liquid-liquid extraction, VK1 trans- and cis- isomers in plasma samples were separated on a ChromCore C30 column (15 cm × 4.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemical Engineering, National Taiwan University, Taipei 106319, Taiwan.
To address the increasingly limited water availability, using metal-organic frameworks (MOFs) to capture atmospheric water vapor as usable resources has emerged as a promising strategy. The adsorption characteristics of MOFs as well as their step pressure (i.e.
View Article and Find Full Text PDFJ Mass Spectrom
October 2025
Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Rome, Italy.
Ionic liquids (ILs) are a class of organic salts with melting points below 100°C. Owing to their unique chemical and physical properties, they are used as solvents and catalysts in various chemical transformations, progressively replacing common volatile organic solvents (VOCs) in green synthetic applications. However, their intrinsic ionic nature can restrict the use of mass spectrometric techniques to monitor the time progress of a reaction occurring in an IL medium, thus preventing one from following the formation of the reaction products or intercepting the reaction intermediates.
View Article and Find Full Text PDFNat Commun
September 2025
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
Rising atmospheric vapor pressure deficit (VPD)-a measure of atmospheric dryness, defined as the difference between saturated vapor pressure (SVP) and actual vapor pressure (AVP)-has been linked to increasing daily mean near-surface air temperatures since the 1980s. However, it remains unclear whether the faster increases in daily maximum temperature (T) relative to daily minimum temperature (T) have contributed to rising VPD. Here, we show that the faster rise in T compared with T over land has intensified VPD from 1980 to 2023.
View Article and Find Full Text PDFJ Environ Manage
September 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
Dissolved oxygen (DO) is a key water quality indicator reflecting river health. Modeling and understanding the spatiotemporal dynamics of DO and its influencing factors are crucial for effective river management. Machine learning (ML) models have gained popularity in water quality prediction; however, their accuracy strongly depends on the predictor variables.
View Article and Find Full Text PDF