Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chronic kidney disease (CKD) is a common disease of aging and increases fracture risk over advanced age alone. Aging and CKD differently impair bone turnover and mineralization. We thus hypothesize that the loss of bone quality would be greatest with the combination of advanced age and CKD. We evaluated bone from young adult (6 mo.), middle-age (18 mo.), and old (24 mo.) male C57Bl/6 mice three months following either 5/6th nephrectomy, to induce CKD, or Sham procedures. CKD exacerbated losses of cortical and trabecular microarchitecture associated with aging. Aging and CKD each resulted in thinner, more porous cortices and fewer and thinner trabeculae. Bone material quality was also reduced with CKD, and these changes to bone material were distinct from those due to age. Aging reduced whole-bone flexural strength and modulus, micrometer-scale nanoindentation modulus, and nanometer-scale tissue and collagen strain (small-angle x-ray scattering [SAXS]. By contrast, CKD reduced work to fracture and variation in bone tissue modulus and composition (Raman spectroscopy), and increased percent collagen strain. The increased collagen strain burden was associated with loss of toughness in CKD. In addition, osteocyte lacunae became smaller, sparser, and more disordered with age for Sham mice, yet these age-related changes were not clearly observed in CKD. However, for CKD, larger lacunae positively correlated with increased serum phosphate levels, suggesting that osteocytes play a role in systemic mineral homeostasis. This work demonstrates that CKD reduces bone quality, including microarchitecture and bone material properties, and that loss of bone quality with age is compounded by CKD. These findings may help reconcile why bone mass does not consistently predict fracture in the CKD population, as well as why older individuals with CKD are at high risk of fragility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760860PMC
http://dx.doi.org/10.1016/j.bone.2019.04.019DOI Listing

Publication Analysis

Top Keywords

bone material
16
ckd
15
bone quality
12
collagen strain
12
bone
11
chronic kidney
8
kidney disease
8
disease aging
8
c57bl/6 mice
8
advanced age
8

Similar Publications

Background: Bone marrow (BM) lesion differentiation remains challenging, and quantitative magnetic resonance imaging (MRI) may enhance accuracy over conventional methods. We evaluated the diagnostic value and inter-reader reliability of Dixon-based signal drop (%drop) and fat fraction percentage (%fat) as adjuncts to existing protocols.

Materials And Methods: In this prospective two-center study, 172 patients with BM signal abnormalities underwent standardized 1.

View Article and Find Full Text PDF

Injectable Plant Phosphate Coordination Compound-Based Adhesive Hydrogel Accelerates Osteoporotic Fracture Healing by Restoring Osteoclast/Osteoblast Imbalance.

ACS Nano

September 2025

Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical Univer

Osteoporotic fractures are notoriously difficult to heal due to an imbalance between osteoblasts and osteoclasts. Current treatments often have limited efficacy or adverse side effects, necessitating safer and more effective solutions. Here, we developed an injectable plant-derived phosphate coordination compound-based adhesive hydrogel (MgPA-Gel) to restore bone homeostasis by integrating magnesium ions (Mg)-phytic acid (PA) nanoparticles with aminated gelatin (Gel-NH) and aldehydated starch (AS).

View Article and Find Full Text PDF

Study Design: Retrospective cohort.

Objective: To evaluate the impact of having a history of obstructive sleep apnea (OSA) in patients undergoing anterior cervical discectomy and fusion (ACDF) on postoperative outcomes.

Background: With an aging population and rates of obesity increasing, comorbidities that influence patient safety are increasingly common.

View Article and Find Full Text PDF

Diatom-Inspired Scaffold for Infected Bone Defect Therapy: Achieving Stable Photothermal Properties and Coordinated Antibacterial-Osteogenic Functions.

Adv Mater

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.

View Article and Find Full Text PDF

Objective: The aim of this RCT was to analyse the relationship between intermittent vibratory forces and external apical root resorption (EARR) in patients treated with clear aligners, building on prior research on vibrational effects on biomarkers.

Materials And Methods: A parallel, three-arm randomised clinical trial included adults to be treated with clear aligners, randomly assigned by a computerised randomisation list to: Group A (vibration from treatment onset), Group B (vibration after 6 weeks), or Group C (no vibration). While patients and orthodontists were aware of group assignments, evaluators remained blinded.

View Article and Find Full Text PDF