Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stem cells are emerging as a therapeutic option for incurable diseases, such as Amyotrophic Lateral Sclerosis (ALS). However, critical issues are related to their origin as well as to the need to deepen our knowledge of the therapeutic actions exerted by these cells. Here, we investigate the therapeutic potential of clinical-grade human neural stem cells (hNSCs) that have been successfully used in a recently concluded phase I clinical trial for ALS patients (NCT01640067). The hNSCs were transplanted bilaterally into the anterior horns of the lumbar spinal cord (four grafts each, segments L3-L4) of superoxide dismutase 1 G93A transgenic rats (SOD1 rats) at the symptomatic stage. Controls included untreated SOD1 rats (CTRL) and those treated with HBSS (HBSS). Motor symptoms and histological hallmarks of the disease were evaluated at three progressive time points: 15 and 40 days after transplant (DAT), and end stage. Animals were treated by transient immunosuppression (for 15 days, starting at time of transplantation). Under these conditions, hNSCs integrated extensively within the cord, differentiated into neural phenotypes and migrated rostro-caudally, up to 3.77 ± 0.63 cm from the injection site. The transplanted cells delayed decreases in body weight and deterioration of motor performance in the SOD1 rats. At 40DAT, the anterior horns at L3-L4 revealed a higher density of motoneurons and fewer activated astroglial and microglial cells. Accordingly, the overall survival of transplanted rats was significantly enhanced with no rejection of hNSCs observed. We demonstrated that the beneficial effects observed after stem cell transplantation arises from multiple events that counteract several aspects of the disease, a crucial feature for multifactorial diseases, such as ALS. The combination of therapeutic approaches that target different pathogenic mechanisms of the disorder, including pharmacology, molecular therapy and cell transplantation, will increase the chances of a clinically successful therapy for ALS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484011PMC
http://dx.doi.org/10.1038/s41419-019-1582-5DOI Listing

Publication Analysis

Top Keywords

sod1 rats
16
stem cells
12
clinical-grade human
8
human neural
8
neural stem
8
anterior horns
8
cell transplantation
8
cells
6
rats
6
transplantation
4

Similar Publications

To date, a large body of data has been accumulated on the biological activity of a low-toxic natural glycoside, glycyrrhizic acid (GA), but the mechanism of its action at the molecular level has not been fully studied. Expanding knowledge about the spectrum of cellular protein targets of GA contributes to understanding new features of pharmacodynamics. The aim of the work was the experimental identification of a tissue-specific spectrum of protein molecules interacting with GA in a model system.

View Article and Find Full Text PDF

Cardioprotective and Antihypertensive Effects of Topical Capsaicin in a Rat Model.

Antioxidants (Basel)

August 2025

Departamento de Farmacología Dr. Rafael Méndez Martínez, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico.

TRPV1 regulates neuronal and vascular function mediated by NO and CGRP. Systemic arterial hypertension (SAH) induces an imbalance in vascular mediators NO and CGRP by altering the transport of Ca ions through TRPV1, generating cellular damage. We studied the effect of topical capsaicin (CS) treatment on cardiac mechanical work, oxidative stress (TAC, NO, BH4, and BH2), cellular damage (MDA, MTO, and 8HO2dG), and inflammation (IL-6 and TNFα), generated by SAH, which was induced by -NAME, in male Wistar rats.

View Article and Find Full Text PDF

This study investigates the role of sulforaphane (SFN) and quercetin (QCT) in alleviating the oxidative stress and modulation of cellular responses induced by doxorubicin (DOX) in rat cardiomyoblast cells H9c2. The potential mechanisms involving Wnt/β-catenin signaling and antioxidant response were determined. We found that SFN effectively mitigated DOX-induced cytotoxicity in H9c2 cells.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a progressive vascular disease characterized by elevated pulmonary vascular resistance, leading to right ventricular (RV) hypertrophy and eventual heart failure. Although current therapies provide symptomatic relief, they offer limited efficacy in reversing the underlying vascular remodeling. In this preclinical study, we investigated the therapeutic potential of induced pluripotent stem cell-derived conditioned medium (iPSC-CM) in a monocrotaline (MCT)-induced rat model of PAH, employing both prophylactic and therapeutic administration strategies.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) form a continuous spectrum of aggressive neurodegenerative diseases affecting primarily motoneurons (MNs) and cortical frontotemporal neurons. Noncell autonomous mechanisms contribute to ALS/FTD, wherein astrocytes release toxic factor(s) detrimental to MNs. Because of the multifactorial nature of ALS, single-pathway-focused therapies have limited effectiveness in improving ALS.

View Article and Find Full Text PDF