Implementing Virtual and Augmented Reality Tools for Radiology Education and Training, Communication, and Clinical Care.

Radiology

From the Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital, 55 Fruit St, Gray 290, Boston, MA 02114 (R.N.U., C.J.M., G.D.N.); Department of Radiology and Biomedical Imaging, University of California San Francisco Medical Center, San Francisco, Calif (B.L.,

Published: June 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Advances in virtual immersive and augmented reality technology, commercially available for the entertainment and gaming industry, hold potential for education and clinical use in medicine and the field of medical imaging. Radiology departments have begun exploring the use of these technologies to help with radiology education and clinical care. The purpose of this review article is to summarize how three institutions have explored using virtual and augmented reality for radiology.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2019182210DOI Listing

Publication Analysis

Top Keywords

augmented reality
12
virtual augmented
8
radiology education
8
clinical care
8
education clinical
8
implementing virtual
4
reality tools
4
radiology
4
tools radiology
4
education training
4

Similar Publications

Aim: To evaluate the effectiveness of the CARES-MFW (Clinical Augmented Reality Education Simulation for Malignant Fungating Wounds) app in enhancing nurses' knowledge and clinical reasoning in the care of MFWs.

Background: Malignant fungating wounds (MFWs) affect many patients with advanced cancer, with nearly 50 % dying within six months of diagnosis. These wounds often present with heavy exudate, pain, malodor and bleeding, leading to profound physical and psychosocial distress.

View Article and Find Full Text PDF

ObjectiveThis work examined performance costs for a spatial integration task when two sources of information were presented at increasing eccentricities with an augmented-reality (AR) head-mounted display (HMD).BackgroundSeveral studies have noted that different types of tasks have varying costs associated with the spatial proximity of information that requires mental integration. Additionally, prior work has found a relatively negligible role of head movements associated with performance costs.

View Article and Find Full Text PDF

Technologies and emerging trends in wearable biosensing.

Prog Mol Biol Transl Sci

September 2025

School of Applied Sciences and Technology, Gujarat Technological University, Gujarat, India. Electronic address:

This chapter examines advancements and future trajectories in wearable biosensing technologies, a multidisciplinary field encompassing healthcare, materials science, and information technology. Wearable biosensors are revolutionizing real-time physiological and biochemical monitoring with applications in personalized health monitoring, disease diagnosis, fitness, and therapeutic interventions. In addition to Internet of Things (IoT) and wireless connectivity technologies such as Bluetooth Low Energy (BLE) and 5G, which facilitate transparent remote monitoring and data exchange, other notable innovations such as machine learning and artificial intelligence enhance real-time processing of data, predictive analytics, and personalized healthcare solutions.

View Article and Find Full Text PDF

Augmented reality (AR) integrates virtual objects in the real world, allowing users to interact intuitively with navigation information. This study systematically reviewed 13 articles on AR technology published from 2005 to 2024 through meta-analysis, comprising a total of 400 participants, to examine its effectiveness in enhancing navigation performance. Compared with traditional navigation tools, the results showed that AR technology more effectively enhances navigation performance, with the overall effect size calculated as 0.

View Article and Find Full Text PDF