98%
921
2 minutes
20
Background: Trichoderma spp. are majorly composed of plant-beneficial symbionts widely used in agriculture as bio-control agents. Studying the mechanisms behind Trichoderma-derived plant benefits has yielded tangible bio-industrial products. To better take advantage of this fungal-plant symbiosis it is necessary to obtain detailed knowledge of which genes Trichoderma utilizes during interaction with its plant host. In this study, we explored the transcriptional activity undergone by T. virens during two phases of symbiosis with maize; recognition of roots and after ingress into the root cortex.
Results: We present a model of T. virens - maize interaction wherein T. virens experiences global repression of transcription upon recognition of maize roots and then induces expression of a broad spectrum of genes during colonization of maize roots. The genes expressed indicate that, during colonization of maize roots, T. virens modulates biosynthesis of phytohormone-like compounds, secretes a plant-environment specific array of cell wall degrading enzymes and secondary metabolites, remodels both actin-based and cell membrane structures, and shifts metabolic activity. We also highlight transcription factors and signal transduction genes important in future research seeking to unravel the molecular mechanisms of T. virens activity in maize roots.
Conclusions: T. virens displays distinctly different transcriptional profiles between recognizing the presence of maize roots and active colonization of these roots. A though understanding of these processes will allow development of T. virens as a bio-control agent. Further, the publication of these datasets will target future research endeavors specifically to genes of interest when considering T. virens - maize symbiosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458689 | PMC |
http://dx.doi.org/10.1186/s12864-019-5651-z | DOI Listing |
Pestic Biochem Physiol
November 2025
Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.
Maize (Zea mays L.) is one of the world's most widely cultivated and economically important cereal crop, serving as a staple food and feed source in over 170 countries. However, its global productivity is threatened by late wilt disease (LWD), a disease caused by Magnaporthiopsis maydis, that spreads through soil and seeds and can cause severe yield losses.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Center for Ecological Public Health Security of Ye
Nanoplastics (NPs) have raised increasing attention due to their potential environmental risks to terrestrial vegetation and food security. However, for the plants with various photosynthetic pathways, the differences in their photosynthetic response and related mechanisms upon NPs exposure are still unclear. Here, the photosynthetic responses of typical soybean and corn plants under polystyrene NPs (PSNPs) exposure were systematically compared for the first time.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:
Polycyclic aromatic hydrocarbons (PAHs) pose a significant threat to ecosystem security and human health. Laccase, a copper-containing oxidase, can oxidize aromatic compounds, potentially enhancing soil organic contaminants degradation and reducing secondary pollution risks in phytoremediation. However, the combined effects of laccase addition and soil temperature on phytoremediation efficiency remain underexplored.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
July 2025
School of Life and Environmental Sciences, University of Sydney, 380 Werombi Road, Brownlow Hill, Camden, NSW 2570 Australia.
Unlabelled: Sugars are essential for plant development, with nitrogen (N) availability playing a critical role in their distribution across plant organs, ultimately shaping growth patterns. However, the regulatory mechanisms modulating carbon (C) assimilate allocation and utilization under different N forms are not well understood. This study examined C fixation, utilization, and spatial re-distribution in the roots of hydroponically grown maize seedlings subjected to four N treatments: 1 mM NO (low N; LN), 2 mM NO (medium N; MN), 10 mM NO (high N; HN), and 1 mM NH (low ammonium; LA).
View Article and Find Full Text PDFPlanta
September 2025
School of Life and Environmental Sciences, University of Sydney, 380 Werombi Road, Brownlow Hill, Camden, NSW, 2570, Australia.
Nitrogen (N) deficiency in maize regulates carbon (C) metabolism by enhancing sugar and starch metabolism and related gene expression in both shoots and roots, while increasing root competition for assimilates causing carbohydrate accumulation in leaves and sheaths due reduced translocation to sink tissues. Soluble sugars are vital for plant development, with nitrogen (N) availability playing a key role in their distribution across plant organs, ultimately shaping growth patterns. However, the regulatory mechanisms governing carbon (C) assimilate allocation and utilization under different N forms remain unclear.
View Article and Find Full Text PDF