98%
921
2 minutes
20
2,6-Di(9H-carbazol-9-yl)pyridine (DiCP) was synthesized and its corresponding homopolymer (PDiCP) and copolymers (P(DiCP--CPDT), P(DiCP--CPDT2), P(DiCP--CPDTK), and P(DiCP--CPDTK2)) were synthesized electrochemically. The anodic copolymer with DiCP:cyclopentadithiophene ketone (CPDTK) = 1:1 feed molar ratio showed high transmittance change (Δ%) and colouration efficiency (), which were measured as 39.5% and 184.1 cm² C at 1037 nm, respectively. Electrochromic devices (ECDs) were composed of PDiCP, P(DiCP--CPDT), P(DiCP--CPDT2), P(DiCP--CPDTK), and P(DiCP--CPDTK2) as anodically-colouring polymers, and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT-PSS) as cathodically-colouring polymers. P(DiCP--CPDTK)/PEDOT-PSS ECD showed light silverish-yellow at 0.0 V, light grey at 0.7 V, grey at 1.3 V, light greyish blue at 1.7 V, and greyish blue at 2.0 V. Moreover, P(DiCP--CPDTK)/PEDOT-PSS ECD presented high Δ (38.2%) and high (633.8 cm² C) at 635 nm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403788 | PMC |
http://dx.doi.org/10.3390/polym10060604 | DOI Listing |
J Colloid Interface Sci
August 2025
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
Hydrogel electrolyte-based electrochromic devices (ECDs) have become a research frontier in the electrochromic community as hydrogels combine the advantages of both liquid and solid electrolytes. However, these ECDs still require external power to operate. In addition, the color change is induced by cations insertion/extraction, accompanying anions accumulation at electrode-electrolyte interface, which may reduce the lifespan of ECDs.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
School of Intelligent Manufacturing, Jiangnan University, Wuxi 214122, P.R. China.
Electrochromic devices (ECDs) hold great promise for applications in displays and smart military camouflage. However, achieving different electrochromic colored states with compatible integration into a monolithic device remains a significant challenge. In this study, we realized effective color modulation of ECDs by tuning the solvent composition, leveraging the effects of solvent polarity.
View Article and Find Full Text PDFGels
July 2025
Key Laboratory of Functional Materials and Applications of Fujian Province, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
Electrochromic (EC) devices are gaining increasing attention for next-generation smart windows and low-power displays due to their reversible color modulation, low operating voltage, and flexible form factors. Recently, electrochromic energy storage devices (EESDs) have emerged as a promising class of multifunctional systems, enabling simultaneous energy storage and real-time visual monitoring. In this study, we report a flexible dual-functional EESD constructed using polyaniline (PANI) films doped with anthraquinone-1-sulfonic acid sodium salt (AQS), coupled with a redox-active PVA-based gel electrolyte also incorporating AQS.
View Article and Find Full Text PDFAdv Mater
August 2025
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
Intelligent modulation of solar and thermal radiation for a smart window, including visible, near-infrared (NIR), and long-wave infrared (LWIR) spectral tri-bands (0.38-25 µm), to achieve indoor comfort and energy efficiency is a critical frontier in sustainable building design. However, independent regulations of multi-functional radiation of visible lighting, NIR heating, and LWIR radiative cooling for dynamic operational requirements and weather conditions are not fully solved.
View Article and Find Full Text PDFAdv Mater
August 2025
Instituto de Tecnología Química (ITQ), Universitat Politècnica de València- Consejo Superior de Investigaciones Científicas (UPV-CSIC), València, 46022, Spain.
Mixed ionic-electronic conductors (MIECs) play a pivotal role in energy storage, bioelectronics, and neuromorphic computing. Understanding charge transport dynamics in these materials is crucial for optimising device performance. This study investigates the transient charging behavior of three representative MIEC systems: PEDOT:PSS, electrochromic WO, and n-doped PBDF polymer films via electrochemical impedance spectroscopy (EIS) and transient current measurements, focusing on anomalous diffusion.
View Article and Find Full Text PDF