Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Nanobrick wall hybrid coating with super oxygen barrier properties were fabricated on polyethylene terephthalate (PET) film using a quadlayer (QL) assembly of polyelectrolytes and nanoplateles. A quadlayer assembly consists of three repeat units of polyacrylic acid (PAA), poly (dimethyl diallyl ammonium chloride) (PDDA) and layered α-zirconium phosphate (α-ZrP). PDDA with positive charges can assemble alternatively with both α-ZrP and PAA with negative charges to form nanobrick wall architectures on the surface of PET film via the electrostatic interaction. The lamellar structure of α-ZrP platelets and the dense QL assembly coating can greatly reduce the oxygen transmission rate (OTR) of PET film. Compared to pristine PET film, the OTR of PET (QL) is reduced from 57 to 0.87 cc/m²/day. Moreover, even with 19 QLs coating, PET (QL) composite film is still with an optical transparency higher than 90% and a haze lower than 10%. Therefore, the transparent PET (QL) composite films with super oxygen barrier properties show great potential application in food packaging and flexible electronic packaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403992 | PMC |
http://dx.doi.org/10.3390/polym10101082 | DOI Listing |