98%
921
2 minutes
20
We propose to characterize the bias and variability of quantitative morphology features of lung lesions across a range of computed tomography (CT) imaging conditions. A total of 15 lung lesions were simulated (five in each of three spiculation classes: low, medium, and high). For each lesion, a series of simulated CT images representing different imaging conditions were synthesized by applying three-dimensional blur and adding correlated noise based on the measured noise and resolution properties of five commercial multislice CT systems, representing three dose levels ( of 1.90, 3.75, 7.50 mGy), three slice thicknesses (0.625, 1.25, 2.5 mm), and 33 clinical reconstruction kernels from five clinical scanners. The images were segmented using three segmentation algorithms and each algorithm was evaluated by computing a Sørensen-Dice coefficient between the ground truth and the segmentation. A series of 21 shape-based morphology features were extracted from both "ground truth" (i.e., preblur without noise) and "image rendered" lesions (i.e., postblur and with noise). For each morphology feature, the bias was quantified by comparing the percentage relative error in the morphology metric between the imaged lesions and the ground-truth lesions. The variability was characterized by calculating the average coefficient of variation averaged across repeats and imaging conditions. The active contour segmentation had the highest average Dice coefficient of 0.80 followed by 0.63 for threshold, and 0.39 for fuzzy c-means. The bias of the features was segmentation algorithm and feature-dependent, with sharper kernels being less biased and smoother kernels being more biased in general. The feature variability from simulated images ranged from 0.30% to 10% for repeats of the same condition and from 0.74% to 25.3% for different lesions in the same spiculation class. In conclusion, the bias of morphology features is dependent on the acquisition protocol in combination with the segmentation algorithm used and the variability is primarily dependent on the segmentation algorithm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434334 | PMC |
http://dx.doi.org/10.1117/1.JMI.6.1.013504 | DOI Listing |
Diagn Interv Radiol
September 2025
LMU University Hospital, LMU Munich, Department of Radiology, Munich, Germany.
Purpose: Computed tomography fluoroscopy (CTF)-guided biopsy is an established technique for sampling pulmonary lesions, particularly with the growing prevalence of lung nodule screening programs. This study investigated procedural and lesion-related factors affecting success and complication rates in routine CTF-guided lung core-needle biopsies at a tertiary center.
Methods: Consecutive patients undergoing percutaneous CTF-guided lung biopsies over a 10-year period (2007-2016) were retrospectively analyzed.
Rev Med Liege
September 2025
Service des Urgences, CHC MontLégia, Liège, Belgique.
Traumatic pulmonary pseudocysts (TPPs) are rare but clinically relevant complications of thoracic trauma, often misdiagnosed due to their non-specific presentation and resemblance to other cavitary pulmonary lesions. We report the case of a 26-year-old male presenting with delayed symptoms following a fall, ultimately diagnosed with multiple TPPs via thoracic CT scan. The patient experienced a favourable evolution with conservative management, including aerosolized tranexamic acid for minor hemoptysis.
View Article and Find Full Text PDFBr J Cancer
September 2025
Department of Genetics, Institut Curie, PSL Research University, Paris, France.
Background: Identifying molecular alterations specific to advanced lung adenocarcinomas could provide insights into tumour progression and dissemination mechanisms.
Method: We analysed tumour samples, either from locoregional lesions or distant metastases, from patients with advanced lung adenocarcinoma from the SAFIR02-Lung trial by targeted sequencing of 45 cancer genes and comparative genomic hybridisation array and compared them to early tumours samples from The Cancer Genome Atlas.
Results: Differences in copy-number alterations frequencies suggest the involvement in tumour progression of LAMB3, TNN/KIAA0040/TNR, KRAS, DAB2, MYC, EPHA3 and VIPR2, and in metastatic dissemination of AREG, ZNF503, PAX8, MMP13, JAM3, and MTURN.
J Thorac Oncol
September 2025
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Emeritus Professor, Seoul National University College of Medicine, Seoul, Republic of Korea.
Introduction: Multifocal subsolid nodules (SSNs) are increasingly detected with widespread lung cancer screening and advanced thoracic imaging, representing a spectrum of multifocal lung adenocarcinomas (LUADs). When synchronous SSNs coexist with a surgically confirmed subsolid LUAD, their trajectories remain poorly understood, contributing to uncertainty regarding optimal management strategies. This study aimed to evaluate the clinical course and impact of synchronous SSNs in such patients and to identify features associated with their progression.
View Article and Find Full Text PDFJ Bras Pneumol
September 2025
. Departamento de Pneumologia, Centro Hospitalar Universitário de São João, Porto, Portugal.
Objectives: The 9th edition of the Tumor, Node, Metastasis (TNM-9) lung cancer classification is set to replace the 8th edition (TNM-8) starting in 2025. Key updates include the splitting of the mediastinal nodal category N2 into single- and multiple-station involvement, as well as the classification of multiple extrathoracic metastatic lesions as involving a single organ system (M1c1) or multiple organ systems (M1c2). This study aimed to assess how the TNM-9 revisions affect the final staging of lung cancer patients and how these changes correlate with overall survival (OS).
View Article and Find Full Text PDF