Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Major depression disorder (MDD) is one of the most prevalent mental disorders worldwide. Diagnosing depression in the early stage is crucial to treatment process. However, due to depression's comorbid nature and the subjectivity in diagnosis, an early diagnosis could be challenging. Recently, machine learning approaches have been used to process Electroencephalography (EEG) and neuroimaging data to facilitate the diagnosis. In the present study, we used a multimodal machine learning approach involving EEG, eye tracking and galvanic skin response data as input to classify depression patients and healthy controls.

Methods: One hundred and forty-four MDD depression patients and 204 matched healthy controls were recruited. They were required to watch a series of affective and neutral stimuli while EEG, eye tracking information and galvanic skin response were recorded via a set of low-cost, portable devices. Three machine learning algorithms including Random Forests, Logistic Regression and Support Vector Machine (SVM) were trained to build dichotomous classification model.

Results: The results showed that the highest classification f1 score was obtained by Logistic Regression algorithms, with accuracy = 79.63%, precision = 76.67%, recall = 85.19% and f1 score = 80.70% LIMITATIONS: No hospitalized patients were available; only outpatients were included in the present study. The sample consisted mostly of young adult, and no elder patients were included.

Conclusions: The machine learning approach can be a useful tool for classifying MDD patients and healthy controls and may help for diagnostic processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2019.03.058DOI Listing

Publication Analysis

Top Keywords

machine learning
16
depression patients
12
patients healthy
12
healthy controls
12
eeg eye
12
eye tracking
12
tracking galvanic
12
galvanic skin
12
skin response
12
major depression
8

Similar Publications

Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.

Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.

View Article and Find Full Text PDF

Turbulent convection governs heat transport in both natural and industrial settings, yet optimizing it under extreme conditions remains a significant challenge. Traditional control strategies, such as predefined temperature modulation, struggle to achieve substantial enhancement. Here, we introduce a deep reinforcement learning (DRL) framework that autonomously discovers optimal control policies to maximize heat transfer in turbulent Rayleigh-Bénard convection.

View Article and Find Full Text PDF

AI-enhanced predictive modeling for treatment duration and personalized treatment planning of cleft lip and palate therapy.

Int J Comput Assist Radiol Surg

September 2025

Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.

Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.

View Article and Find Full Text PDF

Myocarditis is an inflammation of heart tissue. Cardiovascular magnetic resonance imaging (CMR) has emerged as an important non-invasive imaging tool for diagnosing myocarditis, however, interpretation remains a challenge for novice physicians. Advancements in machine learning (ML) models have further improved diagnostic accuracy, demonstrating good performance.

View Article and Find Full Text PDF