Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, we propose a coding electromagnetic metasurface (EMMS) with integrated broadband tunable radiation and low-scattering performance. Anisotropic elements demonstrating opposite phases under x- and y-polarized incidence are investigated and coded as "0" and "1" basic elements. These elements are then arranged in an optimized layout using a simulated annealing algorithm to perform the EMMS. By this means, diffusion scattering is realized in a broadband. Meanwhile, when "0" and "1" are fed properly, the coding EMMS displays wideband linearly or circularly polarized radiation with symmetric profiles. Simulated and experimental results verify that our method offers a simple and ingenious way to integrate broadband radiation and low scattering into one single-coding EMMS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6439016PMC
http://dx.doi.org/10.1186/s11671-019-2944-8DOI Listing

Publication Analysis

Top Keywords

integrated broadband
8
broadband tunable
8
tunable radiation
8
radiation low-scattering
8
low-scattering performance
8
"0" "1"
8
coding anisotropic
4
anisotropic metasurface
4
metasurface integrated
4
broadband
4

Similar Publications

A radio frequency emitter design for the low-frequency regime in atomic experiments.

Rev Sci Instrum

September 2025

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

Radio frequency (RF) control is a key technique in cold atom experiments. We present a compact and efficient RF circuit based on a capacitive transformer network, where a low-frequency coil operating up to 30 MHz serves as both an intrinsic inductor and a power-sharing element. The design enables high current delivery and flexible impedance matching across a wide frequency range.

View Article and Find Full Text PDF

Bandgap-Tailored (BiSb)Se Thin Films Enabling Fast Broadband Near-Infrared Photodetection and Imaging.

Small

September 2025

Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physic

Antimony selenide (SbSe), a narrow-bandgap semiconductor with strong light absorption, exhibits photoresponse up to ≈1050 nm due to its intrinsic 1.15 eV bandgap. To extend detection into the near-infrared (NIR, 700-1350 nm), Bi-alloyed (BiSb)Se is developed via vacuum sputtering and postselenization.

View Article and Find Full Text PDF

Recent Advances in Metal-Organic Frameworks for Electromagnetic Wave Absorption.

Research (Wash D C)

September 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China.

With the rapid advancement of communication technologies, issues of electromagnetic pollution and electromagnetic compatibility have become increasingly severe, heightening the demand for high-performance electromagnetic wave absorption materials. Metal-organic frameworks (MOFs) have flourished in this field owing to their chemical tunability, high porosity, tailored topological structures, and functionality. MOF-derived composites exhibit diverse loss mechanisms and heterogeneous structures, achieving lightweight, broadband, and highly efficient absorption.

View Article and Find Full Text PDF

Bright squeezed light in the kilohertz frequency band.

Light Sci Appl

September 2025

State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Opto-Electronics, Shanxi University, 030006, Taiyuan, China.

The dominant technical noise of a free-running laser practically limits bright squeezed light generation, particularly within the MHz band. To overcome this, we develop a comprehensive theoretical model for nonclassical power stabilization, and propose a novel bright squeezed light generation scheme incorporating hybrid power noise suppression. Our approach integrates broadband passive power stabilization with nonclassical active stabilization, extending the feedback bandwidth to MHz frequencies.

View Article and Find Full Text PDF

Flexible, Transparent, and Microfluidic-Compatible Wafer-Scale Metamaterial Sheets for Dual SEF and SERS Sensing.

ACS Appl Mater Interfaces

September 2025

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.

Integrating surface-enhanced fluorescence (SEF) and surface-enhanced Raman spectroscopy (SERS) into a single probe is a natural step forward for plasmon-enhanced spectroscopy (PES), as SEF enables enhanced fluorescent imaging for fast screening of targets, while SERS allows ultrasensitive trace molecular characterization with specificity. However, many challenges remain, e.g.

View Article and Find Full Text PDF