Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
van der Waals heterostructures based on two-dimensional (2D) materials have attracted tremendous attention for their potential applications in optoelectronic devices, such as solar cells and photodetectors. In addition, the widely tunable Fermi levels of these atomically thin 2D materials enable tuning the device performances/functions dynamically. Herein, we demonstrated a MoTe/BP heterostructure, which can be dynamically tuned to be either p-n or p-p junction by gate modulation due to compatible band structures and electrically tunable Fermi levels of MoTe and BP. Consequently, the electrostatic gating can further accurately control the photoresponse of this heterostructure in terms of the polarity and the value of photoresponsivity. Besides, the heterostructure showed outstanding photodetection/voltaic performances. The optimum photoresponsivity, external quantum efficiency, and response time as a photodetector were 0.2 A/W, 48.1%, and 2 ms, respectively. Our study enhances the understanding of 2D heterostructures for designing gate-tunable devices and reveals promising potentials of these devices in future optoelectronic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b21315 | DOI Listing |