98%
921
2 minutes
20
The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6462078 | PMC |
http://dx.doi.org/10.1073/pnas.1817822116 | DOI Listing |
Dev Growth Differ
September 2025
Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
Multicellular organisms generate organizational complexity through morphogenesis, in which mechanical forces orchestrate the movements and deformations of cells and tissues, while chemical signals regulate the molecular events that generate and coordinate these forces. One common denominator that is critical both for mechanics and biochemistry is material property. Material properties define how materials deform or rearrange under applied forces, and how rapidly molecules interact or spread in space and time.
View Article and Find Full Text PDFBiosystems
September 2025
Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. Electronic address:
Swirling motion is an essential phenomenon that significantly influences numerous biological processes, such as the mixing of molecular components within living cells, nutrient transport, the structural changes of the cytoskeletons of contractile cells and the rearrangement of multicellular systems caused by collective cell migration. The dynamical relationship between subcellular and supracellular rearrangements enhances cell migration and contributes to tissue homeostasis. However, the basic mechanisms that drive swirling motion in biological contexts remain a matter of ongoing inquiry.
View Article and Find Full Text PDFEvol Med Public Health
August 2025
Department of Pediatrics, University of Virginia, Charlottesville, VA, USA.
Primitive emunctory functions to expel harmful substances from cells and the interstitial space of multicellular organisms evolved over the past billion and a half years into the complex physiology of the metanephric kidney. Integrative biology allows empirical testing of hypotheses of the origins of renal structures from homologous single-celled precursors. Emunctory cell complexes called nephridia evolved in metazoan (cnidarian) ancestors 750 million years ago (mya).
View Article and Find Full Text PDFTalanta
August 2025
School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, PR China. Electronic address:
Abnormal cellular Cu level is closely associated with many various pathological conditions, including cancer, Menkes disease, and Wilson's disease. However, sensitive and accurate detection of intracellular Cu remains challenging. To address this, we engineered an interference-free surface-enhanced Raman scattering (SERS) nanoprobe utilizing a target-responsive aggregation mechanism for selective Cu detection.
View Article and Find Full Text PDFSci Adv
September 2025
School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
The transition from unicellular to multicellular life required the acquisition of coordinated and regulated cellular behaviors, including adhesion and migration. In metazoans, this involves adhesion proteins, signaling systems, and an elaborate extracellular matrix (ECM) that contributes to adhesion and signaling interactions. Innovations that enabled complex multicellularity occurred through new genes in these pathways, novel functions for existing genes, and regulatory changes.
View Article and Find Full Text PDF