98%
921
2 minutes
20
Clock neurons within the mammalian suprachiasmatic nuclei (SCN) encode circadian time using interlocked transcription-translation feedback loops (TTFLs) that drive rhythmic gene expression. However, the contributions of other transcription factors outside of the circadian TTFLs to the functionality of the SCN remain obscure. Here, we report that the stem and progenitor cell transcription factor, sex-determining region Y-box 2 (SOX2), is expressed in adult SCN neurons and positively regulates transcription of the core clock gene, Period2. Mice lacking SOX2 selectively in SCN neurons display imprecise, poorly consolidated behavioral rhythms that do not entrain efficiently to environmental light cycles and that are highly susceptible to constant light-induced arrhythmicity. RNA sequencing revealed that Sox2 deficiency alters the SCN transcriptome, reducing the expression of core clock genes and neuropeptide-receptor systems. By defining the transcriptional landscape within SCN neurons, SOX2 enables the generation of robust, entrainable circadian rhythms that accurately reflect environmental time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2019.02.068 | DOI Listing |
Cell Rep
September 2025
Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology & Metabolism, Department of Internal Medicine, UT Southwestern Medical C
Food consumption impacts body weight differently depending on the time of day. Here, we investigated whether suprachiasmatic nucleus (SCN) neurons responsive to the hormone ghrelin temporally regulate eating and body weight in mice. The chemogenetic stimulation of GHSR (growth hormone secretagogue receptor)-expressing SCN neurons during the mid-rest phase-when mice are most sensitive to ghrelin's orexigenic effects-increased food intake.
View Article and Find Full Text PDFMolecules
August 2025
Faculty of Medicine, Institute for Anatomy II, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly used as autophagy modulators on a cell line stably expressing a cyclic nucleotide element-driven luciferase reporter.
Methods: We used an SCN cell line stably transfected with a CRE-luciferase reporter (SCNCRE) to evaluate signaling and vitality responses to various isoform-selective PDE inhibitors and autophagy modulators to evaluate the mechanism of action of the latter.
bioRxiv
July 2025
Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605.
Energy homeostasis in mice is maintained through coordinated activity among hypothalamic nuclei that regulate food intake and thermogenesis. These processes must adapt to the sleep-wake cycle, yet the underlying pathways, cell types, and molecular mechanisms governing their diurnal regulation remain poorly understood. We show that mice lacking the E3 ubiquitin ligase are lean and resistant to diet-induced obesity, owing to reduced food intake and enhanced brown adipose tissue (BAT) thermogenesis.
View Article and Find Full Text PDFbioRxiv
July 2025
Champalimaud Centre for the Unknown, Lisbon, Portugal.
Neural computations support stable behavior despite relying on many dynamically changing biological processes. One such process is representational drift (RD), in which neurons' responses change over the timescale of minutes to weeks, while perception and behavior remain unchanged. Generally, RD is believed to be caused by changes in synaptic weights, which alter individual neurons' tuning properties.
View Article and Find Full Text PDFFront Physiol
July 2025
Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.
Introduction: Prokineticin 2 (PK2) is believed to function as an output molecule, relaying circadian rhythms of behavior and physiology from the suprachiasmatic nucleus (SCN). The expression of PK2 in the SCN is primarily driven by the molecular clock, oscillating with high levels early-mid day and low levels during night. Furthermore, light at night induces the expression of PK2.
View Article and Find Full Text PDF