98%
921
2 minutes
20
Motile cilia on multiciliated cells (MCCs) function in fluid clearance over epithelia. Studies with embryos and individuals with the congenital respiratory disorder reduced generation of multiple motile cilia (RGMC), have implicated the nuclear protein MCIDAS (MCI), in the transcriptional regulation of MCC specification and differentiation. Recently, a paralogous protein, geminin coiled-coil domain containing (GMNC), was also shown to be required for MCC formation. Surprisingly, in contrast to the presently held view, we find that mutant mice can specify MCC precursors. However, these precursors cannot produce multiple basal bodies, and mature into single ciliated cells. We identify an essential role for MCI in inducing deuterosome pathway components for the production of multiple basal bodies. Moreover, GMNC and MCI associate differentially with the cell-cycle regulators E2F4 and E2F5, which enables them to activate distinct sets of target genes (ciliary transcription factor genes versus basal body amplification genes). Our data establish a previously unrecognized two-step model for MCC development: GMNC functions in the initial step for MCC precursor specification. GMNC induces expression that drives the second step of basal body production for multiciliation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.172643 | DOI Listing |
Sci Adv
September 2025
The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
Influenza A viruses remain a global health threat, yet no universal antibody therapy exists. Clinical programs have centered on neutralizing mAbs, only to be thwarted by strain specificity and rapid viral escape. We instead engineered three non-neutralizing IgG2a mAbs that target distinct, overlapping epitopes within the conserved N terminus of the M2 ectodomain (M2e).
View Article and Find Full Text PDFElife
September 2025
Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, United States.
Fragile X syndrome (FXS), a leading inherited cause of intellectual disability and autism, is frequently accompanied by sleep and circadian rhythm disturbances. In this study, we comprehensively characterized these disruptions and evaluated the therapeutic potential of a circadian-based intervention in the fragile X mental retardation 1 () knockout (KO) mouse. The KO mice exhibited fragmented sleep, impaired locomotor rhythmicity, and attenuated behavioral responses to light, linked to an abnormal retinal innervation and reduction of light-evoked neuronal activation in the suprachiasmatic nucleus.
View Article and Find Full Text PDFBrain Commun
August 2025
Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
was identified in human and mouse Huntington's disease brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 of that contributes to aggregate formation and neuronal dysfunction. Detection of the huntingtin exon 1 protein (HTT1a) has been accomplished with Meso Scale Discovery, Homogeneous Time Resolved Fluorescence and immunoprecipitation assays in Huntington's disease knock-in mice, but direct detection in homogenates by gel electrophoresis and western blot assay has been lacking. Subcellular fractions prepared from mouse and human Huntington's disease brain were separated by gel electrophoresis and probed by western blot with neoepitope monoclonal antibodies 1B12 and 11G2 directed to the C-terminal eight residues of HTT1a.
View Article and Find Full Text PDFEMBO Mol Med
September 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, 100071, Beijing, China.
Traditional live attenuated vaccines (LAVs) are typically developed through serial passaging or genetic engineering to introduce specific mutations or deletions. While viral RNA secondary or tertiary structures have been well-documented for their multiple functions, including binding with specific host proteins, their potential for LAV design remains largely unexplored. Herein, using Zika virus (ZIKV) as a model, we demonstrate that targeted disruption of the primary sequence or tertiary structure of a specific viral RNA element responsible for Musashi-1 (MSI1) binding leads to a tissue-specific attenuation phenotype in multiple animal models.
View Article and Find Full Text PDFNat Commun
September 2025
Shanghai Yao Yuan Biotechnology Ltd (Drug Farm), Shanghai, China.
ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome is a rare genetic disease caused by variants in alpha-kinase 1 (ALPK1) resulting in downstream pro-inflammatory signaling mediated by the TIFA/TRAF6/NF-κB pathway. Here, we report the design of an ALPK1 inhibitor, DF-003, with pharmacokinetic properties suitable for daily oral dosing. In biochemical assays, DF-003 potently inhibits human ALPK1 (IC = 1.
View Article and Find Full Text PDF