98%
921
2 minutes
20
This paper aimed to construct a model to represent dynamic motor behavior to quantitatively investigate aging- and stroke-induced changes and, thus, to explore the underlying mechanisms of grip control. Grip force tracking tasks were conducted by stroke patients, age-matched healthy controls, and healthy young adults at 25%, 50%, and 75% maximum voluntary contractions (MVC), respectively. Sensorimotor control of the tracking task was modeled as the step response of a second-order system. The results revealed that aging had no significant effect on the parameters of the model, whereas significant differences were found between the age-matched control and stroke groups. Target force level significantly affected the damping ratio and natural frequency in the young group, and significantly affected the damping ratio in the stroke group. Significant correlations were found between the wolf motor function test score and damping ratio, natural frequency, and settling time at 25% MVC. The model could describe the stroke-induced oscillation and slow response in dynamic grip force control and has the potential to be a quantitative evaluation of motor disabilities in clinic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2019.2904251 | DOI Listing |
Clin Orthop Relat Res
September 2025
Leni & Peter W. May Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Peripheral nerve injury commonly results in pain and long-term disability for patients. Recovery after in-continuity stretch or crush injury remains inherently unpredictable. However, surgical intervention yields the most favorable outcomes when performed shortly after injury.
View Article and Find Full Text PDFSurg Endosc
September 2025
Department of Surgery and Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
Introduction: This study aimed to evaluate surgeons' ergonomic satisfaction when using laparoscopic energy devices and to investigate how prolonged use affects muscle fatigue and surgical performance.
Methods: A two-part study, including a survey and a kinesiologic experiment, was conducted to compare 4 laparoscopic energy devices (D1-D4). Thirty surgeons completed a structured survey assessing ergonomic factors such as device weight, grip strength, handle design, comfort, and trigger location.
Eur J Neurol
September 2025
Department of Neurology and Center for Translational and Behavioral Neurosciences, University Medicine Essen, University of Duisburg-Essen, Essen, Germany.
Background: Changes in handgrip strength have recently been adapted as clinical biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) under the assumption of a disease-specific peripheral neuromuscular dysfunction. However, some have proposed that strength impairments in ME/CFS are better explained by alterations in higher-order motor control. In serial measurements, exertion can been assessed through analysis of variation, since maximal voluntary contractions exhibit lower coefficients of variation (CV) than submaximal contractions.
View Article and Find Full Text PDFVaccine
September 2025
Brighton Collaboration, The Task Force for Global Health, Atlanta, GA, United States of America.
Vaccine safety surveillance systems are vital for the post-market safety monitoring of novel and well-established vaccines, given the sample size, representativeness and follow-up time in clinical trials. The introduction of COVID-19 vaccines during the SARS-CoV-2 pandemic presented unprecedented challenges for safety surveillance. Here, we discuss methodologic considerations for epidemiologic study design and real world data for passive and active surveillance systems for COVID-19 vaccines in the United States (U.
View Article and Find Full Text PDFInt J Exerc Sci
September 2025
Warrior Research Center, Department of Kinesiology, Auburn University, Auburn, AL., USA.
Military personnel face rigorous physical and cognitive demands critical for operational readiness and long-term health. This study evaluated body composition, cognitive performance, and physical fitness metrics in non-entry-level service members to inform tailored fitness interventions. This cross-sectional study analyzed data from Air Command Staff College personnel (N = 307; 89 females, 218 males; age: 37 ± 5 years) at Air University, Maxwell Air Force Base.
View Article and Find Full Text PDF