Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The purpose of this paper is to increase the accuracy of human cardiac diffusion tensor (DT) estimation in diffusion magnetic resonance imaging (dMRI) with a few diffusion gradient directions.

Methods: A structure prior constrained (SPC) method is proposed. The method consists in introducing two regularizers in the conventional nonlinear least squares estimator. The two regularizers penalize the dissimilarity between neighboring DTs and the difference between estimated and prior fiber orientations, respectively. A novel numerical solution is presented to ensure the positive definite estimation.

Results: Experiments on ex vivo human cardiac data show that the SPC method is able to well estimate DTs at most voxels, and is superior to state-of-the-art methods in terms of the mean errors of principal eigenvector, second eigenvector, helix angle, transverse angle, fractional anisotropy, and mean diffusivity.

Conclusion: The SPC method is a practical and reliable alternative to current denoising- or regularization-based methods for the estimation of human cardiac DT.

Significance: The SPC method is able to accurately estimate human cardiac DTs in dMRI with a few diffusion gradient directions.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2019.2902381DOI Listing

Publication Analysis

Top Keywords

human cardiac
20
spc method
16
structure prior
8
prior constrained
8
estimation human
8
cardiac diffusion
8
dmri diffusion
8
diffusion gradient
8
human
5
cardiac
5

Similar Publications

The hallmarks of mechanosensitive ion channels have been observed for half a century in various cell lines, although their mechanisms and molecular identities remained unknown until recently. Identification of the bona fide mammalian mechanosensory Piezo channels resulted in an explosion of research exploring the translation of mechanical cues into biochemical signals and dynamic cell morphology responses. One of the Piezo isoforms - Piezo1 - is integral in the erythrocyte (red blood cell; RBC) membrane.

View Article and Find Full Text PDF

Objective: To clarify the potential risks and causative mechanisms of glare from nighttime road fill lights on driving safety, this study investigates the dual interference of glare-induced visual cognitive load and physiological stress.

Methods: A field driving experiment involving 20 drivers was conducted, with real-time collection of visual data (e.g.

View Article and Find Full Text PDF

The objective of this study was to analyze the characteristics of avoidable mortality in the population aged five to 69 years living in the city of Pelotas/RS, comparing it with the rest of the state of Rio Grande do Sul, from 2000 to 2021. An ecological study was conducted analyzing avoidable mortality coefficients according to sex and age, from 2000 to 2021. The data source was the Mortality Information System, and the trend analysis was performed using Prais-Winsten regression, with standardization of coefficients.

View Article and Find Full Text PDF

Targeted temperature management (TTM) is currently the only potentially neuroprotective intervention recommended for post-cardiac arrest care. However, there are concerns among the scientific community regarding conflicting evidence supporting this recommendation. Moreover, the bulk of trials included in systematic reviews that inform guidelines and recommendations have been conducted in developed countries, with case mix and patient characteristics that significantly differ from the reality of developing countries such as Brazil.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is associated with a higher prevalence of valvular diseases and increased mortality from cardiovascular causes. Factors that influence the genesis of cardiac valve calcification (CVC) in these patients are not well-defined.

Objective: To determine the risk factors for valvular calcification in patients with CKD.

View Article and Find Full Text PDF