Rotating magnetic field as tool for enhancing enzymes properties - laccase case study.

Sci Rep

West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, Piastów Avenue 42, 71-065, Szczecin, Poland.

Published: March 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aim of this study was to analyse the effect of rotating magnetic field (RMF) exposition on the fungal laccase catalytic properties. The results obtained in the study revealed that RMF may positively alter the laccase activity. A significant increase in activities of 11%, 11%, and 9% were observed at 10 Hz, 40 Hz and 50 Hz, respectively. Exposure of laccase to the rotating magnetic field resulted in its increased activity at broader pH range and a slight shift in optimum pH from 4.0 to 4.5 at RMF with frequency 20 Hz. The results show that the enzyme activity, stability, and optimum pH can be significantly altered depending on the characteristic of the applied RMF. Application of rotating magnetic field opens a new way for controlling and directions of enzyme-based bioprocessing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403337PMC
http://dx.doi.org/10.1038/s41598-019-39198-yDOI Listing

Publication Analysis

Top Keywords

rotating magnetic
16
magnetic field
16
rotating
4
field
4
field tool
4
tool enhancing
4
enhancing enzymes
4
enzymes properties
4
laccase
4
properties laccase
4

Similar Publications

Introduction: Accurate diagnosis of subscapularis tears remains challenging due to the limitations of physical examinations and imaging techniques. Therefore, specific radiological parameters have been proposed as predictors of atraumatic subscapularis tears to improve diagnostic sensitivity and accuracy. These parameters include coracohumeral distance (CHD), coracoglenoid angle (CGA), coracoid angle (CA), coracoid overlap (CO), and coracohumeral angle (CHA).

View Article and Find Full Text PDF

Adoptive cell transfers (ACTs) can interact specifically with inflamed tissues, but lack a mechanism for transport through viscous biological barriers such as mucus when administered locally. Further, maintaining cell function is challenging due to the loss of cellular phenotypes in diseased microenvironments. In this work, the use of magnetically controlled helical microrobots is examined to transport macrophages through physiologically representative mucus and maintain functional phenotypes through drug elution for improved cell delivery.

View Article and Find Full Text PDF

Unlabelled: Homologous recombination (HR) is a DNA double-strand break repair pathway that facilitates genetic exchange and protects damaged replication forks during DNA synthesis. As a template-based repair process, the successful repair of a double-strand break depends on locating suitable homology from a donor DNA sequence elsewhere in the genome. In eukaryotes, Rad51 catalyzes the homology search in coordination with the ATP-dependent motor protein Rad54.

View Article and Find Full Text PDF

CrF Jahn-Teller-Distorted Fluoroperovskites: Expanding to RbCrF and CsCrF.

Inorg Chem

September 2025

Chemistry Department and Center for Material Science and Nanotechnology, University of Oslo, Oslo NO-0315, Norway.

The Jahn-Teller effect significantly affects the CrF octahedra in Cr(II) fluoroperovskites. Here, we report the synthesis, crystal structures, and magnetic properties of RbCrF and CsCrF, thereby completing a comprehensive investigation of the CrF fluoroperovskites. Powder samples are prepared using a wet-chemical method, which allows stabilization of Cr(II).

View Article and Find Full Text PDF

Bacterial biofilms attach to various surfaces and represent an important clinical and public health problem, as they are highly recalcitrant and are often associated with chronic, nonhealing diseases and healthcare-associated infections. Antibacterial agents are often not sufficient for their elimination and have to be combined with mechanical removal. Mechanical forces can be generated by actuating nonspherical (anisotropic) magnetically responsive nanoparticles in a rotating magnetic field.

View Article and Find Full Text PDF