Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Response and recovery time to toxic and inflammable hydrogen sulfide (HS) gas are important indexes for metal oxide sensors in real-time environmental monitoring. However, large-scale production of ZnO-based sensing materials for fast response to ppb-level HS has been rarely reported. In this work, hierarchically porous hexagonal ZnO hollow tubule was simply fabricated by zinc salt impregnation and subsequently calcination using absorbent cotton as the template. The influence of calcination temperature on the corresponding morphology and sensing properties is also explored. The hollow tubules calcined at 600 °C are constructed from abundant cross-linked nanoparticles (∼20 nm). Its Brunauer-Emmett-Teller surface area is 31 m·g and the meso- and macroporous sizes are centered at 35 and 115 nm, respectively. The sensor with a lower detection limit of 10 ppb exhibits a fast response speed of 29 s toward the 50 ppb HS rather than those of the reported intrinsic and doped ZnO-based sensing materials. Furthermore, the sensor shows a wide linear range (10-1000 ppb), good reproducibility, and stability. Such excellent trace ppb-level HS performances are mainly related to the inherent characteristics of hierarchically porous hollow tubular structure and the surface-adsorbed oxygen control type mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b00173 | DOI Listing |