Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aggregation of the natively unfolded protein α-synuclein (α-syn) is key to the development of Parkinson's disease (PD). Some nanoparticles (NPs) can inhibit this process and in turn be used for treatment of PD. Using simulation strategies, we show here that α-syn self-assembly is electrostatically driven. Dimerization by head-to-head monomer contact is triggered by dipole-dipole interactions and subsequently stabilized by van der Waals interactions and hydrogen bonds. Therefore, we hypothesized that charged nano-objects could interfere with this process and thus prevent α-syn fibrillation. In our simulations, positively and negatively charged graphene sheets or superparamagnetic iron oxide NPs first interacted with α-syn's N/C terminally charged residues and then with hydrophobic residues in the non-amyloid-β component (61-95) region. In the experimental setup, we demonstrated that the charged nano-objects have the capacity not only to strongly inhibit α-syn fibrillation (both nucleation and elongation) but also to disaggregate the mature fibrils. Through the α-syn fibrillation process, the charged nano-objects induced the formation of off-pathway oligomers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.8b08983DOI Listing

Publication Analysis

Top Keywords

charged nano-objects
12
α-syn fibrillation
12
α-syn
5
charged
5
mechanistic understanding
4
understanding interactions
4
nano-objects
4
interactions nano-objects
4
nano-objects surface
4
surface properties
4

Similar Publications

In the past decades, many techniques have been explored for trapping microscopic and nanoscopic objects, but the investigation of nano-objects under arbitrary forces and conditions remains nontrivial. One fundamental case concerns the motion of a particle under a constant force, known as . Here, we employ metallic nanoribbons embedded in a glass substrate in a capacitor configuration to generate a constant electric field on a charged nanoparticle in a water-filled glass nanochannel.

View Article and Find Full Text PDF

The Role of Light Irradiation and Dendrimer Generation in Directing Electrostatic Self-Assembly.

Polymers (Basel)

January 2025

Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.

pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole-dipole interactions provides well-defined assemblies within a broad size range (10 nm-1 μm) with various shapes.

View Article and Find Full Text PDF

A large number of the thin-film organic structures (polyimides, 2-cyclooctylarnino-5-nitropyridine, N-(4-nitrophenyl)-(L)-prolinol, 2-(n-Prolinol)-5-nitropyridine) sensitized with the different types of the nano-objects (fullerenes, carbon nanotubes, quantum dots, shungites, reduced graphene oxides) are presented, which are studied using the holographic technique under the Raman-Nath diffraction conditions. Pulsed laser irradiation testing of these materials predicts a dramatic increase of the laser-induced refractive index, which is in several orders of the magnitude greater compared to pure materials. The estimated nonlinear refraction coefficients and the cubic nonlinearities for the materials studied are close to or larger than those known for volumetric inorganic crystals.

View Article and Find Full Text PDF

Photoacid-macroion assemblies: how photo-excitation switches the size of nano-objects.

Nanoscale

January 2024

Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, and Bavarian Polymer Institute Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany.

Electrostatic self-assembly of photoacids with oppositely charged macroions yields supramolecular nano-objects in aqueous solutions, whose size is controlled through light irradiation. Nano-assemblies are formed due to electrostatic attractions and mutual hydrogen bonding of the photoacids. Irradiation with UV light leads to the deprotonation of the photoacid and, consequently, a change in particle size.

View Article and Find Full Text PDF

Composite hydrogels composed of low-molecular-weight peptide self-assemblies and polysaccharides are gaining great interest as new types of biomaterials. Interactions between polysaccharides and peptide self-assemblies are well reported, but a molecular picture of their impact on the resulting material is still missing. Using the phosphorylated tripeptide precursor Fmoc-FFY (Fmoc, fluorenylmethyloxycarbonyl; F, phenylalanine; Y, tyrosine; , phosphate group), we investigated how hyaluronic acid (HA) influences the enzyme-assisted self-assembly of Fmoc-FFY generated in situ in the presence of alkaline phosphatase (AP).

View Article and Find Full Text PDF