98%
921
2 minutes
20
Managed aquifer recharge is an effective strategy for urban stormwater management. Chemical ions are normally retained in stormwater and groundwater and may accelerate clogging during the recharge process. However, the effect of water chemistry on physical clogging has not previously been investigated. In this study, we investigated the hydrogeochemical mechanism of saturated porous media clogging in a series of column experiments. The column was packed with river sand and added suspensions of kaolinite particles. Calcium chloride and sodium chloride are used as representative ions to study chemical effects. We found that an increase in ionic strength resulted in retention of kaolinite solids in the column, with a breakthrough peak of C/C value of 1 to 0.2. The corresponding hydraulic conductivity decreased with increased solids clogging. Divalent cations were also found to have a greater influence on kaolinite particle clogging than monovalent cations. The enhanced hydrochemical-related clogging was caused by kaolinite solids flocculating and increasing the deposition rate coefficient by 1 to 2 times in high ionic strength conditions. Three clogging mechanisms of kaolinite solids are proposed: surface filtration, inner blocking, and attachment. This study further deepens the understanding of the mechanisms of solids clogging during aquifer recharge and demonstrates the significance of ionic strength on recharge clogging risk assessments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gwat.12872 | DOI Listing |
J Environ Manage
September 2025
State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Ecohydrology and High Efficient Utilization of Water Resources, Hohhot, 010018, China; Inner Mongolia Section of the Yellow
Large-scale underground coal mining alters regional water cycles, yet the mechanisms governing interactions among water bodies in deep mining areas are poorly understood. For this purpose, by integrating hydrogen and oxygen isotopes, water levels, hydrogeological conditions, and end-member mixing analysis (EMMA), this study systematically analyzed and quantified the circulation and transformation mechanisms among different water bodies influenced by coal mining. Key findings reveal: (1) Mining-induced fractures disrupt the aquitard above the coal seam, establishing a direct hydraulic link between Zhiluo Formation confined groundwater and mine water, with the former contributing 87.
View Article and Find Full Text PDFTerr Atmos Ocean Sci
August 2025
Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan 701, Taiwan (ROC).
Given the pressures on water resources caused by global climate change and human activities, the assessment and management of groundwater resources in mountainous region have become increasingly important. The central mountainous region of Taiwan, as one of the significant sources of groundwater recharge, plays a critical role in overall water resource management due to its groundwater storage capacity and recharge capability. Addressing the challenges of limited survey and observational data in mountainous groundwater assessments, this study uses the lumped parameter groundwater model AquiMod to analyze long-term groundwater level changes at 23 monitoring stations in mountainous areas of central Taiwan.
View Article and Find Full Text PDFGround Water
September 2025
U.S. Geologic Survey, Upper Midwest Water Science Center, Madison, WI.
PEST++IES (White 2018; White et al. 2020) is widely used in the groundwater modeling community for its ability to perform computationally efficient history matching and uncertainty analysis in a highly parameterized context. One primary advantage of using an iterative ensemble smoother is that the number of model runs required per iteration depends on the number of realizations in an ensemble, not the number of parameters in each realization.
View Article and Find Full Text PDFEnviron Pollut
August 2025
College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China. Electronic address:
Groundwater plays a pivotal role in mediating nitrogen transfer to aquatic ecosystems, particularly in arid regions. Water scarcity, coupled with intensive agricultural activities, has placed the groundwater systems under significant pressure from non-point source pollution, underscoring the need for targeted investigation. Focusing on the Chinese Loess Plateau (CLP), we combined dual-isotope analysis (δN-NO, δO-NO) with water isotopes (δD-HO, δO-HO) and implemented a dual-framework approach to investigate nitrate dynamics.
View Article and Find Full Text PDFSci Total Environ
August 2025
Department for Hydrogeology and Hydrochemistry, Institute of Geology, Technische Universitat Bergakademie Freiberg, Freiberg, Germany.
In water-stressed regions, Managed Aquifer Recharge (MAR) is essential for water conservation, helping to sustain groundwater resources and increase resilience to drought. MAR typically involves using surface water, treated wastewater, stormwater, and runoff to address groundwater depletion. Since pharmaceuticals are commonly found in wastewater, stormwater, and treated effluent, it is crucial to understand their behavior in aquifers to prevent the unintended contamination of drinking water.
View Article and Find Full Text PDF