Leveraging GWAS data to identify metabolic pathways and networks involved in maize lipid biosynthesis.

Plant J

USDA ARS Corn Host Plant Resistance Research Unit (CHPRRU), Mississippi State, MS, 39762, USA.

Published: June 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Maize (Zea mays mays) oil is a rich source of polyunsaturated fatty acids (FAs) and energy, making it a valuable resource for human food, animal feed, and bio-energy. Although this trait has been studied via conventional genome-wide association study (GWAS), the single nucleotide polymorphism (SNP)-trait associations generated by GWAS may miss the underlying associations when traits are based on many genes, each with small effects that can be overshadowed by genetic background and environmental variation. Detecting these SNPs statistically is also limited by the levels set for false discovery rate. A complementary pathways analysis that emphasizes the cumulative aspects of SNP-trait associations, rather than just the significance of single SNPs, was performed to understand the balance of lipid metabolism, conversion, and catabolism in this study. This pathway analysis indicated that acyl-lipid pathways, including biosynthesis of wax esters, sphingolipids, phospholipids and flavonoids, along with FA and triacylglycerol (TAG) biosynthesis, were important for increasing oil and FA content. The allelic variation found among the genes involved in many degradation pathways, and many biosynthesis pathways leading from FAs and carbon partitioning pathways, was critical for determining final FA content, changing FA ratios and, ultimately, to final oil content. The pathways and pathway networks identified in this study, and especially the acyl-lipid associated pathways identified beyond what had been found with GWAS alone, provide a real opportunity to precisely and efficiently manipulate high-oil maize genetic improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850169PMC
http://dx.doi.org/10.1111/tpj.14282DOI Listing

Publication Analysis

Top Keywords

pathways
8
snp-trait associations
8
oil content
8
leveraging gwas
4
gwas data
4
data identify
4
identify metabolic
4
metabolic pathways
4
pathways networks
4
networks involved
4

Similar Publications

Chrysotobibenzyl, a bioactive ingredient from Dendrobium chrysotoxum, exhibits potent anti-tumor activity. However, its metabolic profiles remain unelucidated. This study aimed to disclose the metabolic fates of chrysotobibenzyl using human liver fractions.

View Article and Find Full Text PDF

This study investigates the effects of L-carnitine on nuclear maturation and fertilization in cattle and goat oocytes. Ovaries were collected from females with poor reproductive efficiency in the tropical climate, and cumulus-oocyte complexes (COCs) were retrieved from large antral follicles. COCs were cultured with varying concentrations of L-carnitine (0, 0.

View Article and Find Full Text PDF

Background: Initially limited to inpatient use, negative pressure wound therapy (NPWT) is now frequently used in community settings. However, complexities in wound management step-down strategies in the United Kingdom, including regional variations in referral processes, lack of consensus on funding criteria, and limited availability of NPWT units, have led to extended hospital length of stay (LOS) for patients ready for discharge but still needing NPWT. Single-use NPWT (sNPWT) can serve as a bridge between hospital and community NPWT.

View Article and Find Full Text PDF

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Background: PPM1D (protein phosphatase Mg⁺/Mn⁺ dependent 1D) is a Ser/Thr phosphatase that negatively regulates p53 and functions as an oncogenic driver. Its gene amplification and overexpression are frequently observed in various malignancies and disruption of PPM1D degradation has also been reported as a cause of cancer progression. However, the precise mechanisms regulating PPM1D stability remain to be elucidated.

View Article and Find Full Text PDF