Dual-functional fluorescent molecular rotor for endoplasmic reticulum microviscosity imaging during reticulophagy.

Chem Commun (Camb)

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

Published: February 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The microviscosity change associated with reticulophagy is an important component for studying endoplasmic reticulum (ER) stress disorders. Here, a BODIPY-arsenicate conjugate 1-based fluorescent molecular rotor was designed to covalently bind vicinal dithiol-containing proteins in the ER, exhibiting a bifunction of reticulophagy initiation and microviscosity evaluation. Therefore, we could quantify the local viscosity changes during reticulophagy based on the fluorescence lifetime changes of probe 1.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cc00300bDOI Listing

Publication Analysis

Top Keywords

fluorescent molecular
8
molecular rotor
8
endoplasmic reticulum
8
dual-functional fluorescent
4
rotor endoplasmic
4
reticulum microviscosity
4
microviscosity imaging
4
reticulophagy
4
imaging reticulophagy
4
reticulophagy microviscosity
4

Similar Publications

Unraveling biomolecular interactions: a comprehensive review of the electromobility shift assay.

Photochem Photobiol Sci

September 2025

Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.

The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.

View Article and Find Full Text PDF

Volume correlative light and electron microscopy (vCLEM) is a powerful imaging technique that enables the visualization of fluorescently labeled proteins within their ultrastructural context. Currently, vCLEM alignment relies on time-consuming and subjective manual methods. This paper presents CLEM-Reg, an algorithm that automates the three-dimensional alignment of vCLEM datasets by leveraging probabilistic point cloud registration techniques.

View Article and Find Full Text PDF

A triphenyl-imidazole end-capped donor-acceptor type potential molecular probe 3 has been designed and synthesized. Probe 3 upon interaction with different classes of metal ions/anions and NPPs displayed high selectivity with CN anion (LOD = 20.42 nM) through fluorescence "turn-Off" response and a naked-eye sensitive visible color change.

View Article and Find Full Text PDF

Precise measurement of motor neuron dysfunction in Drosophila ALS model via climbing assay and leg imaging.

Methods Cell Biol

September 2025

The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, P.R. China; Medical and Health Research Institute, Zhengzhou Research Institute of HIT, Zhengzhou, HA, P.R. China. Electronic address:

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder characterized by progressive degeneration of motor neurons, leading to muscle weakness, paralysis, and death. While there is a plethora of studies focusing on many aspects of ALS, the pathogenesis of this disease is not well understood, and effective treatments are scarce. Drosophila melanogaster is a powerful model organism for studying ALS due to its genetic tractability and its evolutionarily conserved cellular and molecular processes which are also shared between the fly and human.

View Article and Find Full Text PDF

Supercoiled (Sc) circular DNA, such as plasmids, are essential in molecular biology and hold strong therapeutic potential. However, they are typically produced in Escherichia coli, resulting in bacterial methylations, unnecessary sequences, and contaminants that hinder certain applications including clinical uses. These limitations could be avoided by synthesizing plasmids entirely in vitro, but synthesizing high-purity Sc circular DNA biochemically remains a significant technical challenge.

View Article and Find Full Text PDF