How Do Plant Diseases Caused by Xylella fastidiosa Emerge?

Plant Dis

Department of Biology, University of California, Riverside, CA 92521.

Published: November 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Emerging plant diseases frequently have significant economic, environmental, cultural, and social impacts. The prediction of new disease emergence, associated with new pathogens or not, remains a difficult and controversial topic. The main factors driving epidemics are often only identified several years after outbreaks, generally revealing that a limited number of factors are associated with the emergence of specific groups of pathogens. This pattern is illustrated in the insect-borne xylem-limited bacterium Xylella fastidiosa, an organism associated with several new plant diseases in different regions of the globe. Research during the last decade focusing on several severe disease outbreaks has led to substantial changes in our understanding of X. fastidiosa biology, ecology, and evolution. This new information has not only led to new insights into aspects of the biology of this bacterium and its interactions with plant and insect hosts, but also made available a phylogenetic framework that has allowed for better inferences concerning factors leading to the emergence of diseases. Here we identify and discuss these main pathways leading to epidemics caused by X. fastidiosa. Our ultimate goal was to raise critical questions and issues for academics and regulatory agencies alike, since the information generated during the last decade has both raised new questions but also clarified old ones.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-02-15-0159-FEDOI Listing

Publication Analysis

Top Keywords

plant diseases
12
xylella fastidiosa
8
plant
4
diseases caused
4
caused xylella
4
fastidiosa
4
fastidiosa emerge?
4
emerge? emerging
4
emerging plant
4
diseases frequently
4

Similar Publications

Endophytic Fusarium isolates from Ceratozamia mirandae enhance tomato growth, suppress pathogenic fungi, and induce protection against Botrytis cinerea.

Rev Argent Microbiol

September 2025

IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, Camino a la Presa San José 2055, Col. Lomas 4 Sección, 78216 San Luis Potosí, SLP, Mexico.

Fungal diseases in agricultural crops cause economic losses, with chemical control being the conventional method to manage them. However, this approach negatively impacts both the environment and human health. This study focused on endophytic fungi isolated from the roots of Ceratozamia mirandae in the Mexican locality of Juan Sabines (Villa Corzo, Chiapas).

View Article and Find Full Text PDF

Sweet potato foot rot disease caused by Diaporthe destruens (formerly Plenodomus destruens) severely affects the yield and quality of sweet potatoes. To gain basic knowledge on regulating the pathogen using indigenous soil bacteria, the following organic materials were applied to potted soils collected from a sweet potato field contaminated with D. destruens: Kuroihitomi (compost made from shochu waste and chicken manure), Soil-fine (material made by adsorbing shochu waste on rice bran), and rice bran.

View Article and Find Full Text PDF

Zeolitic imidazolate framework-8 nanoparticles: A promising nano-antimicrobial agent for sustainable management of bacterial leaf streak in rice.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Agricultural and Forestry Biosecurity & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:

Rice bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) significantly reduces rice yield and quality. Traditional chemical control methods often have limited efficacy and raise environmental concerns, highlighting the need for safer and more effective alternatives.

View Article and Find Full Text PDF

Applying natural product repurposing strategy to identify baicalein as novel caseinolytic protease P inhibitor and its application in the treatment of rice bacterial diseases.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:

Plant diseases caused by bacteria affect the yield of crop, greatly reduce the quality of food, and thus posing a great threat to food safety. To fill the gap that no report about ClpP inhibitor is applied in agri-food production field, engineering natural-product repurposing strategy, 55 of natural products were screened using the combination of ClpP inhibitors of Xanthomonas oryzae pv. oryzae (Xoo) screening assay and anti-Xoo activity experiment.

View Article and Find Full Text PDF

Tomato Fusarium wilt, caused by the soil-borne pathogen Fusarium oxysporum f. sp. lycopersici (Fol), poses a significant threat to global tomato production, resulting in severe losses in both yield and quality.

View Article and Find Full Text PDF