Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Attention bias modification (ABM) can decrease the selective visual attention paid to alcohol-related cues but has not been found to reliably reduce alcohol craving. Here, a cognitive intervention to decrease craving by increasing sense of control (Shamloo and Cox, 2014) was used as a complement. We investigated the effects of two such interventions administered singly or in combination. Participants were 41 binge drinkers (BDs) and 10 non-binge drinkers (NBDs). BDs received either ABM, sense of control training, both interventions, or no intervention, and were compared with NBDs who received no intervention. Groups were assessed on alcohol attention bias change including both reaction times and cue-elicited ERPs (visual dot-probe task), alcohol craving change, and alcohol consumption. BDs exhibited higher attention bias scores than NBDs. ABM had no effect on BDs' behavioral or electrophysiological markers of attention bias. Sense of control training did not increase personal sense of control but protected against decreased task accuracy and against increased craving. BDs receiving the combined intervention consumed less alcohol in a bogus taste test than participants receiving no intervention. Taken together, the results suggest that ABM procedure may reduce alcohol consumption if combined with sense of control training.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337047PMC
http://dx.doi.org/10.3389/fnhum.2018.00538DOI Listing

Publication Analysis

Top Keywords

sense control
24
attention bias
20
control training
12
bias sense
8
reduce alcohol
8
alcohol craving
8
alcohol consumption
8
attention
6
sense
6
control
6

Similar Publications

Promiscuity, or selectivity on a spectrum, is an encoded feature in biomolecular anion recognition. To unravel the molecular drivers of promiscuous anion recognition, we have employed a comprehensive approach - spanning experiment and theory - with the Staphylococcus carnosus nitrate regulatory element A (ScNreA) as a model. Thermodynamic analysis reveals that ScNreA complexation with native nitrate and nitrite or non-native iodide is an exothermic process.

View Article and Find Full Text PDF

Reconfigurable nonlinear Pancharatnam-Berry diffractive optics with photopatterned ferroelectric nematics.

Light Sci Appl

September 2025

National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China.

Planar optical elements incorporating space-varying Pancharatnam-Berry phase have revolutionized the manipulation of light fields by enabling continuous control over amplitude, phase, and polarization. While previous research focusing on linear functionalities using apolar liquid crystals (LCs) has attracted much attention, extending this concept to the nonlinear regime offers unprecedented opportunities for advanced optical processing. Here, we demonstrate the reconfigurable nonlinear Pancharatnam-Berry LC diffractive optics in photopatterned ion-doped ferroelectric nematics.

View Article and Find Full Text PDF

Among the different forms of hydrotherapy, carbon dioxide (CO) water immersion improves peripheral vasodilation and blood flow compared with tap water immersion; however, the heat stress placed on the body through CO water immersion and the appropriate immersion protocols are uncertain. Therefore, this study aimed to compare the thermoregulatory responses during CO and tap water immersions. The participants were 10 male college baseball players.

View Article and Find Full Text PDF

Building localized states with high quality factors in compact dynamic systems could enhance the performance of wave control devices such as elastic filters and high-precision sensing devices. Here, we report on the theoretical and experimental investigation of symmetry-protected bound states in the continuum (BICs) in a compressed metaplate. The proposed theory establishes a Bessel-zero-directed multipolarization design that enables precise modulation for the frequencies and modes of BICs.

View Article and Find Full Text PDF

Precise delivery of nanoliter-scale reagents is essential for high-throughput biochemical assays, yet existing platforms often lack real-time control and selective content fusion. Conventional methods rely on passive encapsulation or stochastic pairing, limiting both throughput and biochemical specificity. Here, we introduce an on-demand nanoliter delivery platform that seamlessly integrates electrical sensing, triggered droplet merging, and passive sorting in a single continuous flow.

View Article and Find Full Text PDF