98%
921
2 minutes
20
The human perception of square ultrasonic modulation of the finger-surface friction was investigated during active tactile exploration by using short frictional cues of varying duration and sharpness. In a first experiment, we asked participants to discriminate the transition time and duration of short square ultrasonic reductions of friction. They proved very sensitive to discriminate millisecond differences in these two parameters with the average psychophysical thresholds being 2.3-2.4 ms for both parameters. A second experiment focused on the perception of square friction reductions with variable transition times and durations. We found that for durations of the stimulation larger than 90 ms, participants often perceived three or four edges when only two stimulations were presented while they consistently felt two edges for signals shorter than 50 ms. A subsequent analysis of the contact forces induced by these ultrasonic stimulations during slow and fast active exploration showed that two identical consecutive ultrasonic pulses can induce significantly different frictional dynamics especially during fast motion of the finger. These results confirm the human sensitivity to transient frictional cues and suggest that the human perception of square reductions of friction can depend on their sharpness and duration as well as on the speed of exploration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TOH.2019.2894412 | DOI Listing |
Environ Toxicol Chem
September 2025
Univ. Savoie Mont Blanc, CNRS. EDYTEM.
The environmental impact of Tire and Road Wear Particles (TRWP), arising from tire-road friction, has raised significant concerns. Like microplastics, TRWP contaminate air, water, and soil, with considerable annual emissions and runoff into freshwater ecosystems. Among TRWP compounds, 6PPD-Q, leached from tire particles, shows varying toxicity across species, notably affecting fish and invertebrates.
View Article and Find Full Text PDFPLoS One
September 2025
School of Dental, Health and Care Professions, University of Portsmouth, Portsmouth, United Kingdom.
This study investigates the impact of a sweetened acidic beverage, an apple juice (J) consumption on the tribological properties, viscoelasticity, and protein concentration/ composition of human saliva. Using a combination of tribological measurements, quartz crystal microbalance with dissipation monitoring (QCM-D), and protein analysis, we assessed how J may affect saliva's lubricating behaviour and adsorbed salivary film characteristics compared to water (control). Tribological results revealed that saliva (collected from 32 healthy adults) exposed to water or J exhibited increased friction when compared to unstimulated whole mouth saliva (uWMS), particularly within the boundary lubrication regime.
View Article and Find Full Text PDFLangmuir
September 2025
Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India.
This study explores the effect of dispersion of Fe-doped SnO rods and SnO rod-based additives in transformer oil for lubricant applications. A notable reduction in friction and wear is achieved at a low weight percentage ∼0.025 wt % of additives along with oleic acid and oleyl amine as dispersants.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
In this study, a diamond/diamond-like carbon (DLC) composite coating was designed and fabricated utilizing a combination of chemical vapor deposition (CVD) and magnetron-sputtering-assisted ion beam deposition. This was designed to cope with severe problems such as high wear due to insufficient lubrication under dry sliding conditions with a single diamond. The tribological properties of the fabricated coatings under dry conditions were comparatively evaluated.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
Faculty of Material Science and Engineering, Warsaw University of Technology, ul. Wołoska, 141, 02-507 Warsaw, Poland.
This paper investigates the effect of TiAlC-MAX phase addition as a solid lubricant to AlO. The composites were prepared using powder metallurgy and consolidated by Spark Plasma Sintering (SPS). The influence of TiAlC addition on phase composition and mechanical and tribological properties was evaluated.
View Article and Find Full Text PDF