Arabidopsis acyl-CoA-binding proteins regulate the synthesis of lipid signals.

New Phytol

School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.

Published: July 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant lipid signals are crucial developmental modulators and stress response mediators. A family of acyl-CoA-binding proteins (ACBPs) participates in the lipid trafficking of these signals. Isoform-specific functions can arise from differences in their subcellular distribution, tissue-specificity, stress-responsiveness, and ligand selectivity. In lipid-mediated cell signaling, plant ACBPs are not merely transporters but are also important regulators via their interaction with lipid-metabolic enzymes and precursor lipids. In this Insight, the regulatory roles of plant ACBPs in the synthesis of various signaling lipids, including phosphatidic acid, sterols, oxylipins, and sphingolipids, are reviewed. We focus on the functional significance of these lipid signals in plant development and stress responses with an overview of recent work using reverse genetics and transgenic Arabidopsis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.15707DOI Listing

Publication Analysis

Top Keywords

lipid signals
12
acyl-coa-binding proteins
8
signals plant
8
plant acbps
8
arabidopsis acyl-coa-binding
4
proteins regulate
4
regulate synthesis
4
lipid
4
synthesis lipid
4
signals
4

Similar Publications

Colorectal cancer ranks among the most prevalent and lethal malignant tumors globally. Historically, the incidence of colorectal cancer in China has been lower than that in developed European and American countries; however, recent trends indicate a rising incidence due to changes in dietary patterns and lifestyle. Lipids serve critical roles in human physiology, such as energy provision, cell membrane formation, signaling molecule function, and hormone synthesis.

View Article and Find Full Text PDF

Transformations in plasma metabolic profiles of patients with major depression disorder during treatment.

Metab Brain Dis

September 2025

Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, Hubei, 430022, China.

Major depression disorder (MDD) is a mental condition that significantly threatens both physical and psychological health. This study aimed to discern variances in plasma metabolic profiles between MDD sufferers and healthy counterparts. Additionally, we tracked the hospitalization journey of MDD patients to investigate the normalization of metabolic irregularities through conventional treatment in the form of self-control.

View Article and Find Full Text PDF

Objectives: To investigate the antitumor effects of aucubin (AC) in non-small cell lung cancer (NSCLC) and uncover its plausible mechanism against lung cancer stem-like cells (LCSCs).

Methods: In vitro experiments included MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a reagent commonly used for cell viability assay) and colony formation assays to assess anti-proliferative effects on A549 and NCI-H1975 lung cancer cell lines, wound healing and Transwell invasion assays to evaluate inhibition of cell migration and invasion, tumorsphere-formation experiments to detect changes in NSCLC cell stemness, as well as Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses to measure the expression of LCSC markers (CD44, CD133, Oct4, and Nanog). In vivo experiments were conducted to observe the impact of AC on NSCLC metastasis and mouse survival rates.

View Article and Find Full Text PDF

Creating effective treatments for type 2 diabetes mellitus (T2DM) remains a critical global health challenge. This study investigates the antidiabetic mechanisms of subsp. B-53 ( B-53) in T2DM mice.

View Article and Find Full Text PDF

Mice lacking caveolin-1 (), a major protein of the lipid raft of plasma membrane, show deregulated cellular proliferation of the mammary gland and an abnormal fetoplacental communication during pregnancy. This study leverages a multi-omics approach to test the hypothesis that the absence of elicits a coordinated crosstalk of genes among the mammary gland, placenta and fetal brain in pregnant mice. Integrative analysis of metabolomics and transcriptomics data of mammary glands showed that the loss of significantly impacted specific metabolites and metabolic pathways in the pregnant mice.

View Article and Find Full Text PDF