Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The resolution of the broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these "orphan" groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments. Telonemia has been hypothesized to represent a deeply diverging eukaryotic phylum but no consensus exists as to where it is placed in the tree. Here, we established cultures and report the phylogenomic analyses of three new transcriptome data sets for divergent telonemid lineages. All our phylogenetic reconstructions, based on 248 genes and using site-heterogeneous mixture models, robustly resolve the evolutionary origin of Telonemia as sister to the Sar supergroup. This grouping remains well supported when as few as 60% of the genes are randomly subsampled, thus is not sensitive to the sets of genes used but requires a minimal alignment length to recover enough phylogenetic signal. Telonemia occupies a crucial position in the tree to examine the origin of Sar, one of the most lineage-rich eukaryote supergroups. We propose the moniker "TSAR" to accommodate this new mega-assemblage in the phylogeny of eukaryotes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6844682PMC
http://dx.doi.org/10.1093/molbev/msz012DOI Listing

Publication Analysis

Top Keywords

evolutionary origin
8
telonemia
5
phylogenomic analysis
4
analysis enigmatic
4
enigmatic phylum
4
phylum telonemia
4
telonemia resolves
4
resolves eukaryote
4
tree
4
eukaryote tree
4

Similar Publications

The origin and phylogenetic distribution of symbiotic associations between nodulating angiosperms and nitrogen-fixing bacteria have long intrigued biologists. Recent comparative evolutionary analyses have yielded alternative hypotheses: a multistep pathway of independent gains and losses of root nodule symbiosis vs. a single gain followed by numerous losses.

View Article and Find Full Text PDF

Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.

View Article and Find Full Text PDF

Insights From Language-Trained Apes: Brain Network Plasticity and Communication.

Evol Anthropol

September 2025

Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, USA.

Language is central to the cognitive and sociocultural traits that distinguish humans, yet the evolutionary emergence of this capacity is far from fully understood. This review explores how the study of the brains of language-trained apes (LTAs) offers a unique and valuable opportunity to tease apart the relative contribution of evolved species differences, behavior, and environment in the emergence of complex communication abilities. For example, when raised in sociolinguistically rich and interactive environments, LTAs show communicative competencies that parallel aspects of early human language acquisition and exhibit altered neuroanatomy, including increased connectivity and laterization in regions associated with language.

View Article and Find Full Text PDF

Wnt proteins are critical signaling molecules in developmental processes across animals. Despite intense study, their evolutionary roots have remained enigmatic. Using sensitive sequence analysis and structure modeling, we establish that the Wnts are part of a vast assemblage of domains, the Lipocone superfamily, defined here for the first time.

View Article and Find Full Text PDF

The collision of the Indian and Eurasian plates during the Eocene represents a major tectonic shift that significantly altered biotic dynamics and promoted species diversification across the Oriental region. To explain the diversification of taxa from the Indian subcontinent into Southeast Asia, two principal hypotheses have been proposed: the "Biotic-ferry" and "Step-stone" models. The subfamily Perittopinae, a lineage of semi-aquatic bugs comprising a single genus and 20 extant species, provides an ideal system for testing these hypotheses due to its disjunct distribution spanning the Indian subcontinent and Southeast Asia.

View Article and Find Full Text PDF