Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A label-free method for sulfadimethoxine (SDM) detection using an aptamer-based liquid crystal biosensor is developed. The sensor probe is fabricated by immobilizing amine-functionalized aptamers onto the glass slide decorating mixed self-assembled layers of triethoxysilylbutyraldehyde (TEA) and N,N-dimethyl-n-octadecyl-3-aminopropyltrimethoxysilylchloride (DMOAP). Liquid crystals (LCs) are supported on the surface and serve as response elements, which assume the homeotropic alignment and cause a dark optical appearance under crossed polarizers. In the presence of SDM, the formation of SDM-aptamer compounds induces a notable change in the topographical structure of the surface, which disturbs the original homeotropic orientation of LCs and results in a bright optical appearance. A detection limit of 10 μg L-1 is obtained, which is far lower than the maximum residue limit (100 μg L-1 in China). This facile method shows good specificity for SDM detection and may have great potential for detecting other small molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8an02049cDOI Listing

Publication Analysis

Top Keywords

liquid crystals
8
sdm detection
8
optical appearance
8
μg l-1
8
detection
4
detection sulfadimethoxine
4
sulfadimethoxine optical
4
optical images
4
images liquid
4
crystals label-free
4

Similar Publications

Monatomic glass formation through competing order balance.

Nat Commun

September 2025

Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.

The phase transformation of single-element systems is a fundamental natural process with broad implications, yet many aspects remain puzzling despite their simplicity. For instance, transition metals, Tantalum (Ta) and Zirconium (Zr), commonly form body-centred cubic crystals when supercooled. However, according to large-scale computer simulations, their crystallisation rates can differ by over 100 times.

View Article and Find Full Text PDF

Reconfigurable nonlinear Pancharatnam-Berry diffractive optics with photopatterned ferroelectric nematics.

Light Sci Appl

September 2025

National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China.

Planar optical elements incorporating space-varying Pancharatnam-Berry phase have revolutionized the manipulation of light fields by enabling continuous control over amplitude, phase, and polarization. While previous research focusing on linear functionalities using apolar liquid crystals (LCs) has attracted much attention, extending this concept to the nonlinear regime offers unprecedented opportunities for advanced optical processing. Here, we demonstrate the reconfigurable nonlinear Pancharatnam-Berry LC diffractive optics in photopatterned ion-doped ferroelectric nematics.

View Article and Find Full Text PDF

On-liquid surface synthesis of diyne-linked two-dimensional polymer crystals.

Nat Commun

September 2025

Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.

The synthesis of thin crystalline two-dimensional polymers (2DPs) typically relies on reversible dynamic covalent reactions. While substantial progress has been made in solution-based and interfacial syntheses, achieving 2DPs through irreversible carbon-carbon coupling reactions remains a formidable challenge. Herein, we present an on-liquid surface (a mixture of N,N-dimethylacetamide and water, DMAc-HO) synthesis method for constructing diyne-linked 2DP (DY2DP) crystals via Glaser coupling, assisted by a perfluoro-surfactant (PFS) monolayer.

View Article and Find Full Text PDF

An amphiphilic peptide with unnatural amino acids as an alignment medium for RDC measurements.

Magn Reson Lett

May 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

The multiple oligopeptides have been regarded as promising alignment media due to their structural diverseness and tendency for self-assembly in solution. Herein, an assembled amphiphilic peptide alignment medium, i.e.

View Article and Find Full Text PDF

Self-Transformation of 2D SnSe Nanosheets into SnO/Se Nanocomposites for Efficient Photodetection.

ACS Appl Mater Interfaces

September 2025

School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong518055, China.

The rapid development of liquid exfoliation technology has boosted fundamental research and applications of ultrathin two-dimensional (2D) materials. However, the small-sized exfoliated 2D materials with a high specific surface area may exhibit poor chemical stability. Understanding the stability of 2D crystals will be significant for their preservation and service and for the development of new stable phases via the spontaneous transition from unstable structures.

View Article and Find Full Text PDF