Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A key component in controlling the spread of an epidemic is deciding where, when and to whom to apply an intervention. We develop a framework for using data to inform these decisions in realtime. We formalize a treatment allocation strategy as a sequence of functions, one per treatment period, that map up-to-date information on the spread of an infectious disease to a subset of locations where treatment should be allocated. An optimal allocation strategy optimizes some cumulative outcome, e.g. the number of uninfected locations, the geographic footprint of the disease or the cost of the epidemic. Estimation of an optimal allocation strategy for an emerging infectious disease is challenging because spatial proximity induces interference between locations, the number of possible allocations is exponential in the number of locations, and because disease dynamics and intervention effectiveness are unknown at out-break. We derive a Bayesian on-line estimator of the optimal allocation strategy that combines simulation-optimization with Thompson sampling. The estimator proposed performs favourably in simulation experiments. This work is motivated by and illustrated using data on the spread of white nose syndrome, which is a highly fatal infectious disease devastating bat populations in North America.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334759PMC

Publication Analysis

Top Keywords

infectious disease
16
allocation strategy
16
optimal allocation
12
emerging infectious
8
disease
6
optimal
4
optimal treatment
4
treatment allocations
4
allocations space
4
space time
4

Similar Publications

Background: Existing longitudinal cohort study data and associated biospecimen libraries provide abundant opportunities to efficiently examine new hypotheses through retrospective specimen testing. Outcome-dependent sampling (ODS) methods offer a powerful alternative to random sampling when testing all available specimens is not feasible or biospecimen preservation is desired. For repeated binary outcomes, a common ODS approach is to extend the case-control framework to the longitudinal setting.

View Article and Find Full Text PDF

Implementing Social Media Strategies in Community-Partnered HIV Research: Practical Considerations From 3 Ongoing Studies.

JMIR Public Health Surveill

September 2025

Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.

Background: In recent years, social media has emerged as a pivotal tool in implementation science efforts to address the HIV epidemic. Engaging community partners is essential to ensure the successful and equitable implementation of social media strategies. There is a notable lack of scholarship addressing the operational considerations for studies using social media strategies in community-partnered HIV research.

View Article and Find Full Text PDF

Community Connectedness as a Source of Adherence to HIV Prevention Behaviors and Resilience Among Transgender Women of Color in New York City, 2020-2022.

Am J Public Health

October 2025

Alexander Furuya, Asa Radix, Adam Whalen, Jessica Contreras, Jenesis Merriman, Krish J. Bhatt, Roberta Scheinmann, and Dustin T. Duncan are with the Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY. Yusuf Ransome is with the Department of Social and Behav

To examine how one's community connectedness may act as a source of resilience and promote HIV prevention and care behaviors among transgender women of color. We analyzed survey data from 313 transgender women of color living in New York City collected from August 2020 to November 2022. The Community Connectedness Scale asks participants about their baseline feelings of connection, feelings of inclusion, feelings of belonging, feelings of isolation, and feelings of being unlike in relation to the transgender community.

View Article and Find Full Text PDF

Predicting Unplanned Readmission Risk in Patients With Cirrhosis: Complication-Aware Dynamic Classifier Selection Approach.

JMIR Med Inform

September 2025

College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.

Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.

View Article and Find Full Text PDF

Diagnostic and Screening AI Tools in Brazil's Resource-Limited Settings: Systematic Review.

JMIR AI

September 2025

Faculty of Medicine, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/n - Tabuleiro do Martins, Maceió, 57072-900, Brazil, 558232141461.

Background: Artificial intelligence (AI) has the potential to transform global health care, with extensive application in Brazil, particularly for diagnosis and screening.

Objective: This study aimed to conduct a systematic review to understand AI applications in Brazilian health care, especially focusing on the resource-constrained environments.

Methods: A systematic review was performed.

View Article and Find Full Text PDF