Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background and Purpose- We sought to explore the effect of genetic imbalance on functional outcome after ischemic stroke (IS). Methods- Copy number variation was identified in high-density single-nucleotide polymorphism microarray data of IS patients from the CADISP (Cervical Artery Dissection and Ischemic Stroke Patients) and SiGN (Stroke Genetics Network)/GISCOME (Genetics of Ischaemic Stroke Functional Outcome) networks. Genetic imbalance, defined as total number of protein-coding genes affected by copy number variations in an individual, was compared between patients with favorable (modified Rankin Scale score of 0-2) and unfavorable (modified Rankin Scale score of ≥3) outcome after 3 months. Subgroup analyses were confined to patients with imbalance affecting ohnologs-a class of dose-sensitive genes, or to those with imbalance not affecting ohnologs. The association of imbalance with outcome was analyzed by logistic regression analysis, adjusted for age, sex, stroke subtype, stroke severity, and ancestry. Results- The study sample comprised 816 CADISP patients (age 44.2±10.3 years) and 2498 SiGN/GISCOME patients (age 67.7±14.2 years). Outcome was unfavorable in 122 CADISP and 889 SiGN/GISCOME patients. Multivariate logistic regression analysis revealed that increased genetic imbalance was associated with less favorable outcome in both samples (CADISP: P=0.0007; odds ratio=0.89; 95% CI, 0.82-0.95 and SiGN/GISCOME: P=0.0036; odds ratio=0.94; 95% CI, 0.91-0.98). The association was independent of age, sex, stroke severity on admission, stroke subtype, and ancestry. On subgroup analysis, imbalance affecting ohnologs was associated with outcome (CADISP: odds ratio=0.88; 95% CI, 0.80-0.95 and SiGN/GISCOME: odds ratio=0.93; 95% CI, 0.89-0.98) whereas imbalance without ohnologs lacked such an association. Conclusions- Increased genetic imbalance was associated with poorer functional outcome after IS in both study populations. Subgroup analysis revealed that this association was driven by presence of ohnologs in the respective copy number variations, suggesting a causal role of the deleterious effects of genetic imbalance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7441497PMC
http://dx.doi.org/10.1161/STROKEAHA.118.021856DOI Listing

Publication Analysis

Top Keywords

genetic imbalance
24
functional outcome
16
imbalance associated
12
ischemic stroke
12
copy number
12
imbalance ohnologs
12
imbalance
10
outcome
9
stroke
9
outcome ischemic
8

Similar Publications

Alcanivorax: Unique Genus of Hydrocarbon-Degrading Bacteria.

Biotechnol Appl Biochem

September 2025

Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Türkiye.

Natural seepage, anthropogenic activities and accidents affect the ecosystem by increasing hydrocarbon footprints in the environment and cause a disruption in the biogeochemical balance. In addition, these imbalances result in human diseases and a decrease in the diversity of animals and microorganisms. Microbial bioremediation is the only sustainable option for the cleanup of hydrocarbon-impacted wastes, and the genus Alcanivorax is famous for its extraordinary ability to degrade hydrocarbons.

View Article and Find Full Text PDF

Genetic Entanglement Enables Ultrastable Biocontainment in the Mammalian Gut.

ACS Synth Biol

September 2025

Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.

Imbalances in the mammalian gut are associated with acute and chronic conditions, and using engineered probiotic strains to deliver synthetic constructs to treat them is a promising strategy. However, high rates of mutational escape and genetic instability limit the effectiveness of biocontainment circuits needed for safe and effective use. Here, we describe STALEMATE (equence enngd ulti lyered geneic buffring), a dual-layered failsafe biocontainment strategy that entangles genetic sequences to create pseudoessentiality and buffer against mutations.

View Article and Find Full Text PDF

Patients with Duchenne muscular dystrophy (DMD) may experience neurobehavioral and cognitive concerns, including psychiatric symptoms, due to the absence of full-length dystrophin (Dp427), frequently accompanied by deficiencies in shorter isoforms. The lack of dystrophin affects neurophysiological processes from the uterine phase, impacting neural circuitry in brain regions such as the prefrontal cortex, hippocampus, and cerebellum. This leads to reduced inhibitory GABAergic transmission and altered hippocampal glutamatergic signaling.

View Article and Find Full Text PDF

Background And Objective: Periodontitis is a chronic inflammatory disease driven by immune dysfunction and microbial imbalance. This study aims to identify circulating druggable proteins causally linked to the disease.

Materials And Methods: We integrated proteomics data from deCODE genetics with periodontitis genome-wide association studies (GWAS) from the Million Veteran Program to identify proteins associated with periodontitis.

View Article and Find Full Text PDF

METTL1-mediated mG methylation of mRNA promotes macrophage inflammatory responses and multiple organ injury.

Sci Immunol

September 2025

Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.

RNA modifications regulate phenotype and function of macrophages by regulating RNA translation, splicing, and stability. However, the role of -methylguanosine (mG) modification in macrophages and inflammation remains unexplored. In this study, we observed elevated levels of the methyltransferase METTL1 and mG modifications in macrophages from mouse and human tissues during acute kidney injury (AKI).

View Article and Find Full Text PDF