Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) may define left atrial (LA) anatomy and structural remodelling, and facilitate atrial fibrillation (AF) ablation. We aimed to assess the intra- and inter-observer reproducibility and agreement of LGE-CMR parameters with direct application to AF ablation techniques.

Methods And Results: One experienced and one non-experienced observer performed complete LGE-CMR data analysis twice, on different days, in 40 randomly selected LGE-CMR examinations [20 performed before ablation (pre-ablation) and 20 performed 3 months after ablation (post-ablation)]. Four additional observers (two experienced and two non-experienced) performed complete LGE-CMR data analysis in a subgroup of 30 patients (15 pre-ablation and 15 post-ablation). All LGE-CMR were performed in sinus rhythm. Intra- and inter-observer reproducibility of LA volume, LA area, and sphericity index (SI) was high: coefficient of variation <10% and intraclass correlation coefficient >0.71. Geometric congruency of repeated reconstruction of LA shape was high: maximal error <5 mm for intra-observer and <8 mm for inter-observer. The precision of scar location increased with extent of scar, and was high (Dice coefficient >0.75) when the scar area was >5 cm2 for a single observer and >15 cm2 for multiple observers. Non-experienced observers performed equally well to experienced observers.

Conclusion: Late gadolinium enhancement cardiac magnetic resonance measurements of LA area, volume, and SI were reproducible, and geometric congruency of LA shape was high. Location of scar was precise for scar areas >5 cm2 for single observers and >15 cm2 for multiple observers, regardless of the observers' experience. These results may serve as a reference for future studies on the role for substrate-based AF ablation procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1093/europace/euy314DOI Listing

Publication Analysis

Top Keywords

late gadolinium
12
gadolinium enhancement
12
enhancement cardiac
12
cardiac magnetic
12
magnetic resonance
12
resonance measurements
8
left atrial
8
atrial fibrillation
8
fibrillation ablation
8
ablation procedures
8

Similar Publications

Background: Cardiac laminopathies, associated with mutations in the LMNA gene, are a rare inherited disorder characterized by a broad range of clinical manifestations. There are currently no data on the association between supraventricular re-entrant tachycardias and LMNA-related cardiomyopathy.

Case Summary: A 26-year-old male presented with either wide-QRS tachycardia with a left bundle branch block (LBBB) pattern or narrow QRS tachycardia, as well as a history of palpitations since age 15.

View Article and Find Full Text PDF

Background MRI-derived arrhythmogenic substrate, including late gadolinium enhancement (LGE) and extracellular volume fraction (ECV), is indicative of sudden cardiac death (SCD) risk in nonischemic dilated cardiomyopathy (DCM). The relative prognostic value of LGE and ECV remains unclear. Purpose To evaluate the performance of LGE and T1 mapping in predicting SCD in patients with DCM and to explore clinical implementation.

View Article and Find Full Text PDF

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF

Full Free-Breathing Cardiac MRI: Enhancing Efficiency and Image Quality in Clinical Practice.

J Cardiovasc Magn Reson

September 2025

Department of Magnetic Resonance Imaging, Fuwai Hospital and National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China; Key Laboratory of Cardiovascular Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.

Background: Conventional cardiac magnetic resonance (CMR) examinations require patients to repeatedly hold their breath, which can reduce examination efficiency and pose challenges for patients unable to do so. This study aimed to demonstrate the feasibility and effectiveness of a full free-breathing CMR protocol in clinical practice.

Methods: Patients prospectively enrolled in this study underwent a full free-breathing CMR exam on a 3T scanner between June 1 and June 30, 2024.

View Article and Find Full Text PDF

Background: Cardiac biomarkers are important components for diagnosing perioperative myocardial infarction (MI). Efforts to detect MI by biomarker-release only faced heavy criticism, because cardiac biomarker-release has also been observed in situations that are not always related to cell death (e.g.

View Article and Find Full Text PDF