Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The extracellular matrix (ECM) in idiopathic pulmonary fibrosis (IPF) drives fibrosis progression; however, the ECM composition of the fibroblastic focus (the hallmark lesion in IPF) and adjacent regions remains incompletely defined. Herein, we serially sectioned IPF lung specimens constructed into tissue microarrays and immunostained for ECM components reported to be deregulated in IPF. Immunostained sections were imaged, anatomically aligned, and 3D reconstructed. The myofibroblast core of the fibroblastic focus (defined by collagen I, α-smooth muscle actin, and procollagen I immunoreactivity) was associated with collagens III, IV, V, and VI; fibronectin; hyaluronan; and versican immunoreactivity. Hyaluronan immunoreactivity was also present at the fibroblastic focus perimeter and at sites where early lesions appear to be forming. Fibrinogen immunoreactivity was often observed at regions of damaged epithelium lining the airspace and the perimeter of the myofibroblast core but was absent from the myofibroblast core itself. The ECM components of the fibroblastic focus were distributed in a characteristic and reproducible manner in multiple patients. This information can inform the development of high-fidelity model systems to dissect mechanisms by which the IPF ECM drives fibrosis progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485370PMC
http://dx.doi.org/10.1172/jci.insight.125185DOI Listing

Publication Analysis

Top Keywords

fibroblastic focus
20
myofibroblast core
12
extracellular matrix
8
idiopathic pulmonary
8
pulmonary fibrosis
8
drives fibrosis
8
fibrosis progression
8
ecm components
8
fibroblastic
5
focus
5

Similar Publications

Cardiovascular diseases are increasingly recognized as chronic disorders driven by a complex interplay between inflammation and fibrosis. In this review, we elucidate emerging mechanisms that govern the transition from acute inflammation to pathological fibrosis, with particular focus on cellular crosstalk between neutrophils, macrophages, fibroblasts, and myofibroblasts. We explore how dysregulated immune responses and extracellular matrix (ECM) remodeling sustain a pathogenic feedback loop, promoting myocardial stiffening and adverse cardiac remodeling.

View Article and Find Full Text PDF

Follicular unit extraction (FUE) has become a leading technique in hair transplantation, yet optimal management of the donor area remains a clinical challenge. This systematic review analyzes intraoperative and postoperative interventions applied to the donor area in FUE hair transplantation, with a focus on both clinical outcomes and the cellular and molecular mechanisms involved in tissue repair, inflammatory response, and regenerative processes. A comprehensive literature search was conducted in PubMed and EMBASE (January 2000-June 2025), identifying clinical studies that evaluated donor area treatments and reported outcomes related to healing, inflammation, infection, and patient satisfaction.

View Article and Find Full Text PDF

Cancer-associated fibroblasts as a potential therapeutic target for thyroid cancers.

Int J Surg

September 2025

BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.

Thyroid cancer, a prevalent endocrine malignancy, is influenced by its tumor microenvironment (TME), with cancer-associated fibroblasts (CAFs) playing a pivotal role in disease progression. Molecularly, CAFs orchestrate a pro-tumorigenic niche via cytokine secretion and extracellular matrix (ECM) stiffening, underscoring their targetability. Therapeutic strategies, including small molecule inhibitor-based therapies, immune-based therapies, nanoparticle-based approaches, and combination regimens, have been evaluated for their efficacy in disrupting CAF functionality.

View Article and Find Full Text PDF

Yes-associated protein (YAP) is a major downstream nuclear coactivator of the Hippo pathway and is activated during myocardial hypertrophy. Verteporfin, a YAP inhibitor, may serve as a potential treatment for myocardial hypertrophy. This study was aimed at exploring the role and underlying mechanisms of verteporfin in isoproterenol (ISO)-induced myocardial hypertrophy both in vivo and in vitro.

View Article and Find Full Text PDF

Role of PAI-1 in the progression and treatment resistance of non-small cell lung cancer.

Biomed J

September 2025

Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University. Electronic address:

Background: Lung cancer is the leading cause of cancer-related mortality worldwide. Although immune checkpoint inhibitors (ICIs), chemotherapy, and molecular targeted therapies have improved survival rates, therapeutic resistance remains a major barrier to curative outcomes. Recently, plasminogen activator inhibitor-1 (PAI-1) has been implicated in lung cancer progression and treatment resistance.

View Article and Find Full Text PDF