Scaling Our World View: How Monoamines Can Put Context Into Brain Circuitry.

Front Cell Neurosci

Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden.

Published: December 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Monoamines are presumed to be diffuse metabotropic neuromodulators of the topographically and temporally precise ionotropic circuitry which dominates CNS functions. Their malfunction is strongly implicated in motor and cognitive disorders, but their function in behavioral and cognitive processing is scarcely understood. In this paper, the principles of such a monoaminergic function are conceptualized for locomotor control. We find that the serotonergic system in the ventral spinal cord scales ionotropic signals and shows topographic order that agrees with differential gain modulation of ionotropic subcircuits. Whereas the subcircuits can collectively signal predictive models of the world based on life-long learning, their differential scaling continuously adjusts these models to changing mechanical contexts based on sensory input on a fast time scale of a few 100 ms. The control theory of biomimetic robots demonstrates that this precision scaling is an effective and resource-efficient solution to adapt the activation of individual muscle groups during locomotion to changing conditions such as ground compliance and carried load. Although it is not unconceivable that spinal ionotropic circuitry could achieve scaling by itself, neurophysiological findings emphasize that this is a unique functionality of metabotropic effects since recent recordings in sensorimotor circuitry conflict with mechanisms proposed for ionotropic scaling in other CNS areas. We substantiate that precision scaling of ionotropic subcircuits is a main functional principle for many monoaminergic projections throughout the CNS, implying that the monoaminergic circuitry forms a network within the network composed of the ionotropic circuitry. Thereby, we provide an early-level interpretation of the mechanisms of psychopharmacological drugs that interfere with the monoaminergic systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307502PMC
http://dx.doi.org/10.3389/fncel.2018.00506DOI Listing

Publication Analysis

Top Keywords

ionotropic circuitry
12
ionotropic subcircuits
8
precision scaling
8
ionotropic
7
scaling
6
circuitry
6
scaling view
4
view monoamines
4
monoamines context
4
context brain
4

Similar Publications

Synaptic Plasticity Linked to Ionotropic Glutamate Receptors After Nicotine Exposure.

Curr Neuropharmacol

April 2025

Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geomjeong-gu, Busan 46241, Republic of Korea.

Tobacco dependence is a chronic, relapsing disorder with significant socioeconomic and health impacts that lead to considerable morbidity and mortality worldwide. Nicotine is the primary component responsible for the initiation and continuation of tobacco use. Nicotine exposure causes multiple alterations in the structure and function of the brain's reward system.

View Article and Find Full Text PDF

Single-nucleotide polymorphism analysis accurately predicts multiple impairments in hippocampal activity and memory performance in a murine model of idiopathic autism.

Sci Rep

January 2025

Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.

Autism spectrum disorder (ASD) comprises alterations in brain anatomy and physiology that ultimately affect information processing and behavior. In most cases, autism is considered idiopathic, involving alterations in numerous genes whose functions are not extensively documented. We evaluated the C58/J mouse strain as an idiopathic model of ASD, emphasizing synaptic transmission as the basis of information processing.

View Article and Find Full Text PDF

The brain responds to experience through modulation of synaptic transmission, that is synaptic plasticity. An increase in the strength of synaptic transmission is manifested as long-term potentiation (LTP), while a decrease in the strength of synaptic transmission is expressed as long-term depression (LTD). Most of the studies of synaptic plasticity have been carried out by induction via electrophysiological stimulation.

View Article and Find Full Text PDF

Developmental neurogenesis is a tightly regulated spatiotemporal process with its dysregulation implicated in neurodevelopmental disorders. NMDA receptors are glutamate-gated ion channels that are widely expressed in the early nervous system, yet their contribution to neurogenesis is poorly understood. Notably, a variety of mutations in genes encoding NMDA receptor subunits are associated with neurodevelopmental disorders.

View Article and Find Full Text PDF

Phenylacetaldehyde (PAH), an aromatic odorant, exists in varied fruits including overripe bananas and prickly pear cactus, the 2 major host fruits of Drosophila melanogaster. It acts as a potent ligand for the Ionotropic receptor 84a (IR84a) and the Odorant receptor 67a (OR67a), serving as an important food and courtship cue for adult fruit flies. Drosophila melanogaster larvae respond robustly to diverse feeding odorants, such as ethyl acetate (EA), an aliphatic ester.

View Article and Find Full Text PDF