Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mycobacteria are a wide group of organisms that includes strict pathogens, such as , as well as environmental species known as nontuberculous mycobacteria (NTM), some of which-namely -are important opportunistic pathogens. In addition to a distinctive cell envelope mediating critical interactions with the host immune system and largely responsible for their formidable resistance to antimicrobials, mycobacteria synthesize rare intracellular polymethylated polysaccharides implicated in the modulation of fatty acid metabolism, thus critical players in cell envelope assembly. These are the 6--methylglucose lipopolysaccharides (MGLP) ubiquitously detected across the genus, and the 3--methylmannose polysaccharides (MMP) identified only in NTM. The polymethylated nature of these polysaccharides renders the intervening methyltransferases essential for their optimal function. Although the knowledge of MGLP biogenesis is greater than that of MMP biosynthesis, the methyltransferases of both pathways remain uncharacterized. Here, we report the identification and characterization of a unique -adenosyl-l-methionine-dependent sugar 1--methyltransferase (MeT1) from that specifically blocks the 1-OH position of 3,3'-di--methyl-4α-mannobiose, a probable early precursor of MMP, which we chemically synthesized. The high-resolution 3D structure of MeT1 in complex with its exhausted cofactor, -adenosyl-l-homocysteine, together with mutagenesis studies and molecular docking simulations, unveiled the enzyme's reaction mechanism. The functional and structural properties of this unique sugar methyltransferase further our knowledge of MMP biosynthesis and provide important tools to dissect the role of MMP in NTM physiology and resilience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338870PMC
http://dx.doi.org/10.1073/pnas.1813450116DOI Listing

Publication Analysis

Top Keywords

cell envelope
8
mmp biosynthesis
8
mmp
5
biosynthesis mycobacterial
4
mycobacterial methylmannose
4
polysaccharides
4
methylmannose polysaccharides
4
polysaccharides requires
4
requires unique
4
unique 1--methyltransferase
4

Similar Publications

HIV-1-mediated CD4 downregulation is a well-known mechanism that protects infected cells from antibody-dependent cellular cytotoxicity (ADCC). While CD4 downregulation by HIV-1 Nef and Vpu proteins has been extensively studied, the contribution of the HIV-1 envelope glycoprotein (Env) in this mechanism is less understood. While Env is known to retain CD4 in the endoplasmic reticulum (ER) through its CD4-binding site (CD4bs), little is known about the mechanisms underlying this process.

View Article and Find Full Text PDF

The FtsEX-EnvC-AmiA/B system is a key component of the cell division machinery that directs breakage of the peptidoglycan layer during separation of daughter cells. Structural and mechanistic studies have shown that ATP binding by FtsEX in the cytoplasm drives periplasmic conformational changes in EnvC, which lead to the binding and activation of peptidoglycan amidases such as AmiA and AmiB. The FtsEX-EnvC amidase system is highly regulated to prevent cell lysis with at least two separate layers of autoinhibition that must be relieved to initiate peptidoglycan hydrolysis during division.

View Article and Find Full Text PDF

Introduction: Interferon-induced transmembrane proteins (IFITMs) inhibit the entry of diverse enveloped viruses. The spectrum of antiviral activity of IFITMs is largely determined by their subcellular localization. IFITM1 localizes to and primarily blocks viral fusion at the plasma membrane, while IFITM3 prevents viral fusion in late endosomes by accumulating in these compartments.

View Article and Find Full Text PDF

Cdk1-dependent lamin aggregation underlies oxidative stress-induced nuclear shape abnormalities.

BMB Rep

September 2025

Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499; Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon 16499; BK21 R&E Initiative for Advanced Precision Medicine, Ajou University School of Medicine, Suwon 16499, Korea.

Altered nuclear morphology, one of the characteristics of cancer cells, is often indicative of tumor prognosis. While reactive oxygen species (ROS) are known to induce nuclear morphology changes, mechanisms underlying these effects remain elusive, particularly regarding nuclear assembly. We hypothesized that mitotic cells might exhibit increased susceptibility to ROSinduced nuclear deformation due to the dynamic nature of nuclear envelope during mitosis, i.

View Article and Find Full Text PDF

Marine-derived sulfated glycans display a potent virostatic mechanism to block herpes simplex virus type-1 (HSV-1) entry and spread.

Carbohydr Polym

November 2025

Departments of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.. Electronic address:

A naturally derived library of glycomimetic mimicking the structure-function of heparan sulfate (HS) remains an untapped reservoir for drug discovery against viral infections. In this work we screened a library of marine-derived sulfated glycans from seaweeds and sea cucumbers to investigate if they can compete for the ligand/receptor binding sites to prevent virus entry. Multiple promising candidates were identified, such as RPI-27 (IC: 1.

View Article and Find Full Text PDF