98%
921
2 minutes
20
Up to now, aerobic granulation of activated sludge is only realised in SBRs, where the discontinuous feed and sedimentation allow the formation of dense granules with excellent settling properties. However, aerobic granulation in continuous-flow plants (CFP) is gaining more and more interest in order to exploit the advantages of these excellent sludge properties to construct compact and efficient WWTP. Within the scope of this project, a SBR and CFP were operated in parallel to investigate the aerobic granulation of activated sludge and to compare the biomass in terms of their structure and settling behavior. CFP operation included two experimental phases with different reactor designs. The use of synthetic wastewater during phase I led to a biomass with a SVI of 42 ml g, whereby the SVI declined only to 85 ml g in the second phase and the use of municipal sewage. After the start-up period, microscopic images of the biomass from CFP comprised small compact granules with a high flocculent fraction. Particle size distribution for phase II confirm, that 72% of the particles had a size over 200 μm. A strong correlation was observed between the appearance of NO-N in the first reactor and the SVI. The results illustrate, that the anaerobic conditions during feeding are essential to keep stable granules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2018.10.101 | DOI Listing |
N Z Vet J
September 2025
Diagnostics, Readiness and Surveillance, Biosecurity New Zealand, Ministry for Primary Industries, Wellington, New Zealand.
Case History: In 2023, 160/245 (65%) 2-year-old KiwiCross dairy heifers from a seasonally calving Otago herd developed severe granular vulvovaginitis after calving.
Clinical Findings: Affected heifers presented 3-12 days post-calving with tail elevation, vaginal discharge and, in most cases, vulval swelling. Heifers were afebrile although some were inappetent.
Nan Fang Yi Ke Da Xue Xue Bao
August 2025
School of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
Objectives: To investigate the effects of formulated granules of (TGY) on motor deficits in a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute Parkinson's disease (PD) and explore the possible molecular mechanisms.
Methods: Ninety C57BL/6 mice were randomized equally into 6 groups, including a control group, a PD model group, a NEC-1 (6.5 mg/kg) treatment group, two TGY treatment groups at 5 and 2.
Environ Res
August 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China. Electronic address:
In situ cultivation and long-term stabilization of continuous-flow aerobic granular sludge (AGS) pose significant challenges for the sustainable advancement of wastewater technology. Herein, we demonstrated the successful 330-day operation of a novel continuous-flow self-circulating AcOA-Zier reactor. Aeration-driven liquid recirculation achieved recirculation-to-influent (R/I) ratios of 26-70, optimizing dissolved oxygen gradients and enabling exceptional contaminant removal of 96 % for chemical oxygen demand (COD) and 95 % for total inorganic nitrogen (TIN).
View Article and Find Full Text PDFWater Res
August 2025
Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, PR China. Electronic address:
Aerobic granular sludge (AGS) technology is often constrained by slow granulation and structural instability, issues largely attributed to imbalances in filamentous bacteria and extracellular polymeric substances (EPS). In this study, calcium-loaded activated carbon microtubes (ACMTs-Ca) were developed as novel frameworks to enhance AGS formation and stability. The interfacial energy barrier between microorganisms and ACMTs-Ca was reduced by 67.
View Article and Find Full Text PDFWater Res
August 2025
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. Electronic address:
The aerobic granular sludge (AGS) process has emerged as a viable alternative to landfill leachate treatment. The mechanisms by which dissolved organic matter (DOM) in landfill leachate, a potential stimulant, is utilized during treatment with AGS systems remain unclear. In this study, we revealed DOM-mediated nitrogen removal in AGS receiving the effluent from up-flow anaerobic sludge blanket (UASB).
View Article and Find Full Text PDF