98%
921
2 minutes
20
Model calibration (or "tuning") is a necessary part of developing and testing coupled ocean-atmosphere climate models regardless of their main scientific purpose. There is an increasing recognition that this process needs to become more transparent for both users of climate model output and other developers. Knowing how and why climate models are tuned and which targets are used is essential to avoiding possible misattributions of skillful predictions to data accommodation and vice versa. This paper describes the approach and practice of model tuning for the six major U.S. climate modeling centers. While details differ among groups in terms of scientific missions, tuning targets and tunable parameters, there is a core commonality of approaches. However, practices differ significantly on some key aspects, in particular, in the use of initialized forecast analyses as a tool, the explicit use of the historical transient record, and the use of the present day radiative imbalance vs. the implied balance in the pre-industrial as a target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309528 | PMC |
http://dx.doi.org/10.5194/gmd-10-3207-2017 | DOI Listing |
J Therm Biol
September 2025
Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:
In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.
View Article and Find Full Text PDFJMIR Public Health Surveill
September 2025
Earth Observation Centre (EOC), Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
Background: Neighborhoods resulting from rapid urbanization processes are often saturated with eateries for local communities, potentially increasing exposure to unhealthy foods and creating diabetogenic residential habitats.
Objective: We examined the association between proximity of commercial food outlets to local neighborhood residences and type 2 diabetes (T2D) cases to explore how local T2D rates vary by location and provide policy-driven metrics to monitor food outlet density as a potential control for high local T2D rates.
Methods: This cross-sectional ecological study included 11,354 patients with active T2D aged ≥20 years geocoded using approximate neighborhood residence aggregated to area-level rates and counts by subdistricts (mukims) in Penang, northern Malaysia.
Proc Natl Acad Sci U S A
September 2025
Chinese Academy of Sciences Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
Vegetation phenology, i.e., seasonal biological events such as leaf-out and leaf-fall, regulates local climate through biophysical processes like evapotranspiration (ET) and albedo.
View Article and Find Full Text PDFPLoS One
September 2025
Instituto de Física, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.
Dengue fever remains a major public health concern, requiring continuous efforts to mitigate its impact. This study investigates the influence of key temperature-dependent parameters on dengue transmission dynamics in Foz do Iguaçu, a tri-border municipality in southern Brazil, using a mathematical model based on a system of ordinary differential equations. The fitted model aligns well with observed data.
View Article and Find Full Text PDFInt J Biometeorol
September 2025
Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
Plant viewing activities, which encompass the enjoyment of seasonal plant phenomena such as flowering and autumn leaf coloration, have become popular worldwide. Plant viewing activities are increasingly challenged by climate change, as key components like plant phenology and climate comfort are highly sensitive to global warming. However, few studies have explored the impact of climate change on viewing activities, particularly from an integrated, multi-factor perspective.
View Article and Find Full Text PDF