Publications by authors named "Gavin A Schmidt"

Article Synopsis
  • Climate change mitigation in the U.S. offers societal benefits through improved air quality, which boosts human health, labor productivity, and crop yields early on, while reduced heat exposure benefits will become more significant by 2060.
  • Monetized benefits are substantial, estimated in the tens of trillions for avoided deaths, and significantly higher than previous studies, especially when considering clean air impacts.
  • Focusing on immediate air quality improvements can better align climate policies with societal benefits and support faster acceptance of necessary mitigation actions.
View Article and Find Full Text PDF

This paper describes the GISS-E2.1 contribution to the Coupled Model Intercomparison Project, Phase 6 (CMIP6). This model version differs from the predecessor model (GISS-E2) chiefly due to parameterization improvements to the atmospheric and ocean model components, while keeping atmospheric resolution the same.

View Article and Find Full Text PDF

In the early Pleistocene, global temperature cycles predominantly varied with ~41-kyr (obliquity-scale) periodicity. Atmospheric greenhouse gas concentrations likely played a role in these climate cycles; marine sediments provide an indirect geochemical means to estimate early Pleistocene CO. Here we present a boron isotope-based record of continuous high-resolution surface ocean pH and inferred atmospheric CO changes.

View Article and Find Full Text PDF

Scientists active in the public sphere recognize the importance of broader communications but sometimes have an incomplete or exaggerated view of the risks to both their public and professional reputations as a function of their advocacy. These risks are connected fundamentally to the degree that the advocacy positions they take are based on values that are shared (or not) with their audiences. An encapsulation of the connections between Risks, Advocacy, and Values in Engagement (RAVE) may help inform choices that public scientists must make.

View Article and Find Full Text PDF

Palaeoclimate variations are an essential component in constraining future projections of climate change as a function of increasing anthropogenic greenhouse gases. The Earth System Sensitivity (ESS) describes the multi-millennial response of Earth (in terms of global mean temperature) to a doubling of CO concentrations. A recent study used a correlation of inferred temperatures and radiative forcing from greenhouse gases over the past 800,000 years to estimate the ESS from present day CO is about 9°C, and to imply a long-term commitment of 3–7°C even if greenhouse gas levels remain at present-day concentrations.

View Article and Find Full Text PDF

Model calibration (or "tuning") is a necessary part of developing and testing coupled ocean-atmosphere climate models regardless of their main scientific purpose. There is an increasing recognition that this process needs to become more transparent for both users of climate model output and other developers. Knowing how and why climate models are tuned and which targets are used is essential to avoiding possible misattributions of skillful predictions to data accommodation and vice versa.

View Article and Find Full Text PDF

Since the late 1970s, satellite-based instruments have monitored global changes in atmospheric temperature. These measurements reveal multidecadal tropospheric warming and stratospheric cooling, punctuated by short-term volcanic signals of reverse sign. Similar long- and short-term temperature signals occur in model simulations driven by human-caused changes in atmospheric composition and natural variations in volcanic aerosols.

View Article and Find Full Text PDF

Ample physical evidence shows that carbon dioxide (CO(2)) is the single most important climate-relevant greenhouse gas in Earth's atmosphere. This is because CO(2), like ozone, N(2)O, CH(4), and chlorofluorocarbons, does not condense and precipitate from the atmosphere at current climate temperatures, whereas water vapor can and does. Noncondensing greenhouse gases, which account for 25% of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75% of the greenhouse effect.

View Article and Find Full Text PDF

Evaluating multicomponent climate change mitigation strategies requires knowledge of the diverse direct and indirect effects of emissions. Methane, ozone, and aerosols are linked through atmospheric chemistry so that emissions of a single pollutant can affect several species. We calculated atmospheric composition changes, historical radiative forcing, and forcing per unit of emission due to aerosol and tropospheric ozone precursor emissions in a coupled composition-climate model.

View Article and Find Full Text PDF

Our climate model, driven mainly by increasing human-made greenhouse gases and aerosols, among other forcings, calculates that Earth is now absorbing 0.85 +/- 0.15 watts per square meter more energy from the Sun than it is emitting to space.

View Article and Find Full Text PDF