98%
921
2 minutes
20
The integration of vascular structures into in vitro cultured tissues provides realistic models of complex tissue-vascular interactions. Despite the incidence and impact of muscle-wasting disorders, advanced in vitro systems are still far from recapitulating the environmental complexity of skeletal muscle. Our model comprises differentiated human muscle fibers enveloped by a sheath of human muscle-derived fibroblasts and supported by a vascular network with mural-like cells. Here, we demonstrate the induction of muscle-specific endothelium and the self-organization of endomysial muscle fibroblasts mediated by endothelial cells. We use this model to mimic the fibrotic environment characterizing muscular dystrophies and to highlight key signatures of fibrosis that are neglected or underestimated in traditional 2D monocultures. Overall, this vascularized meso-scale cellular construct finely recapitulates the human skeletal muscle environment and provides an advanced solution for in vitro studies of muscle physiology and pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2018.11.092 | DOI Listing |
Mol Biol Rep
September 2025
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
Regenerative cardiology has emerged as a novel strategy to improve cardiac healing following ischemic injury. While stem-cell-mediated cardiac regeneration has garnered much attention as a promising strategy, its value remains debated owing to the lack of ideal stem cell source candidates. Resident/endogenous cardiac-derived stromal cells (CSCs) exhibit superior therapeutic potential due to their innate abilities to differentiate into cardiac cells, especially cardiomyocytes (CM).
View Article and Find Full Text PDFJACC Basic Transl Sci
September 2025
BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands. Electronic address: andy.bak
Coronary artery bypass graft (CABG) surgery remains the gold standard of care to prevent myocardial ischemia in patients with advanced atherosclerosis; however, poor long-term graft patency remains a considerable and long-standing problem. Excessive vascular smooth muscle cell (SMC) proliferation in the grafted tissue is recognized as central to late CABG failure. We previously identified SMILR, a human-specific SMC-enriched long noncoding RNA that drives SMC proliferation, suggesting that targeting SMILR expression could be a novel way to prevent neointima formation, and thus CABG failure.
View Article and Find Full Text PDFDisabil Rehabil
September 2025
Faculty of Business and Social Sciences, University of Applied Sciences, Osnabrück, Germany.
Purpose: To summarize the evidence on the effectiveness of manual therapy (MT) and exercise targeted to the neck or jaw and neck (combined) in the management of orofacial pain (OFP).
Material And Methods: The protocol was registered in PROSPERO (CRD42021227490). Electronic searches were conducted in MEDLINE, EMBASE, Cochrane Library, Web of Science, SCOPUS, and CINAHL.
Neuropathol Appl Neurobiol
October 2025
Division of Rheumatology and Systemic Inflammatory Diseases, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Aims: Sarcoid myopathy (SaM) is characterised by granulomatous myositis (GM) and can overlap with inclusion body myositis (IBM), a late-onset chronic idiopathic inflammatory myopathy with a still enigmatic pathogenesis. As GM can occur in different clinical contexts, we aimed to examine the histomorphologic features and gene expression profiles in cases of definite SaM that may inform diagnostic and therapeutic considerations.
Methods: We performed a multidimensional characterisation of muscle biopsy specimens from patients with 'pure SaM' (n=17), SaM with concomitant IBM (SaM-IBM) (n=2), including histopathologic and ultrastructural analysis in addition to quantitative real-time polymerase chain reaction.
J Sports Sci
September 2025
Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan.
This study aimed to investigate the acute changes in the passive stiffness of biarticular hamstring muscles after passive stretching and eccentric-only resistance exercise performed at different loads. Thirteen healthy young male participants performed four exercise sessions (on separate days) that comprised passive knee extension (0% of maximal eccentric torque) and eccentric-only knee flexion at different loads (25%, 50% and 75%). Maximal knee joint range of motion, passive torque, shear moduli of the biarticular hamstring muscles, and maximal isometric torque were measured before, 5 min, and 30 min after completing each session.
View Article and Find Full Text PDF