A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. | LitMetric

Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model.

Sci Total Environ

Department of Earth Observation Science, Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands; International Initiative on Spatial Lifecourse Epidemiology (ISLE), Enschede, the Netherlands.

Published: March 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Remote sensing image products (e.g. brightness of nighttime lights and land cover/land use types) have been widely used to disaggregate census data to produce gridded population maps for large geographic areas. The advent of the geospatial big data revolution has created additional opportunities to map population distributions at fine resolutions with high accuracy. A considerable proportion of the geospatial data contains semantic information that indicates different categories of human activities occurring at exact geographic locations. Such information is often lacking in remote sensing data. In addition, the remarkable progress in machine learning provides toolkits for demographers to model complex nonlinear correlations between population and heterogeneous geographic covariates. In this study, a typical type of geospatial big data, points-of-interest (POIs), was combined with multi-source remote sensing data in a random forests model to disaggregate the 2010 county-level census population data to 100 × 100 m grids. Compared with the WorldPop population dataset, our population map showed higher accuracy. The root mean square error for population estimates in Beijing, Shanghai, Guangzhou, and Chongqing for this method and WorldPop were 27,829 and 34,193, respectively. The large under-allocation of the population in urban areas and over-allocation in rural areas in the WorldPop dataset was greatly reduced in this new population map. Apart from revealing the effectiveness of POIs in improving population mapping, this study promises the potential of geospatial big data for mapping other socioeconomic parameters in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.12.276DOI Listing

Publication Analysis

Top Keywords

remote sensing
12
geospatial big
12
big data
12
population
10
data
9
population mapping
8
data random
8
random forests
8
forests model
8
sensing data
8

Similar Publications